Standard Deviations: Flawed Assumptions, Tortured Data, and Other Ways to Lie with Statistics
Gary Smith - 2014
In Standard Deviations, economics professor Gary Smith walks us through the various tricks and traps that people use to back up their own crackpot theories. Sometimes, the unscrupulous deliberately try to mislead us. Other times, the well-intentioned are blissfully unaware of the mischief they are committing. Today, data is so plentiful that researchers spend precious little time distinguishing between good, meaningful indicators and total rubbish. Not only do others use data to fool us, we fool ourselves.With the breakout success of Nate Silver’s The Signal and the Noise, the once humdrum subject of statistics has never been hotter. Drawing on breakthrough research in behavioral economics by luminaries like Daniel Kahneman and Dan Ariely and taking to task some of the conclusions of Freakonomics author Steven D. Levitt, Standard Deviations demystifies the science behind statistics and makes it easy to spot the fraud all around.
Becoming the Math Teacher You Wish You'd Had: Ideas and Strategies from Vibrant Classrooms
Tracy Zager - 2017
Pose the same question to students and many will use words like "boring", "useless", and even "humiliating". In
Becoming the Math Teacher You Wish You'd Had
, author Tracy Zager helps teachers close this gap by making math class more like mathematics. Tracy has spent years working with highly skilled math teachers in a diverse range of settings and grades. You'll find this book jam-packed with new ideas from these vibrant classrooms. How to Teach Student-Centered Mathematics: Zager outlines a problem-solving approach to mathematics for elementary and middle school educators looking for new ways to inspire student learningBig Ideas, Practical Application: This math book contains dozens of practical and accessible teaching techniques that focus on fundamental math concepts, including strategies that simulate connection of big ideas; rich tasks that encourage students to wonder, generalize, hypothesize, and persevere; and routines to teach students how to collaborateKey Topics for Elementary and Middle School Teachers:
Becoming the Math Teacher You Wish You'd Had
offers fresh perspectives on common challenges, from formative assessment to classroom management for elementary and middle school teachersAll teachers can move towards increasingly authentic and delightful mathematics teaching and learning. This important book helps develop instructional techniques that will make the math classes we teach so much better than the math classes we took.
Mathematician's Delight
W.W. Sawyer - 1943
Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject.'W.W. Sawyer's deep understanding of how we learn and his lively, practical approach have made this an ideal introduction to mathematics for generations of readers. By starting at the level of simple arithmetic and algebra and then proceeding step by step through graphs, logarithms and trigonometry to calculus and the dizzying world of imaginary numbers, the book takes the mystery out of maths. Throughout, Sawyer reveals how theory is subordinate to the real-life applications of mathematics - the Pyramids were built on Euclidean principles three thousand years before Euclid formulated them - and celebrates the sheer intellectual stimulus of mathematics at its best.
Math Through the Ages: A Gentle History for Teachers and Others
William P. Berlinghoff - 2002
Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."
Stochastic Calculus Models for Finance II: Continuous Time Models (Springer Finance)
Steven E. Shreve - 2004
The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for shastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes.This book is being published in two volumes. This second volume develops shastic calculus, martingales, risk-neutral pricing, exotic options and term structure models, all in continuous time.Masters level students and researchers in mathematical finance and financial engineering will find this book useful.Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.
The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Jason Rosenhouse - 2009
Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.
The Official Guide for GMAT Verbal Review
Graduate Management Admission Council (GMAC) - 2005
This work focuses on the verbal skills necessary to pass the GMAT, with nearly 300 questions and explanations on subjects such as reading comprehension, critical reasoning, sentence correction and analytical writing assesment.
To Infinity and Beyond: A Cultural History of the Infinite
Eli Maor - 1986
He evokes the profound intellectual impact the infinite has exercised on the human mind--from the horror infiniti of the Greeks to the works of M. C. Escher; from the ornamental designs of the Moslems, to the sage Giordano Bruno, whose belief in an infinite universe led to his death at the hands of the Inquisition. But above all, the book describes the mathematician's fascination with infinity--a fascination mingled with puzzlement. Maor explores the idea of infinity in mathematics and in art and argues that this is the point of contact between the two, best exemplified by the work of the Dutch artist M. C. Escher, six of whose works are shown here in beautiful color plates.--Los Angeles Times [Eli Maor's] enthusiasm for the topic carries the reader through a rich panorama.--Choice Fascinating and enjoyable.... places the ideas of infinity in a cultural context and shows how they have been espoused and molded by mathematics.--Science
The Heart of Mathematics: An Invitation to Effective Thinking
Edward B. Burger - 1999
In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.
Beginning Web Programming with HTML, XHTML and CSS
Jon Duckett - 2004
It follows standards-based principles, but also teaches readers ways around problems they are likely to face using (X)HTML.While XHTML is the "current" standard, the book still covers HTML because many people do not yet understand that XHTML is the official successor to HTML, and many readers will still stick with HTML for backward compatibility and simpler/informal Web pages that don't require XHTML compliance.The book teaches basic principles of usability and accessibility along the way, to get users into the mode of developing Web pages that will be available to as many viewers as possible from the start. The book also covers the most commonly used programming/scripting language -- JavaScript -- and provides readers with a roadmap of other Web technologies to learn after mastering this book to add more functionality to their sites.
The Book of Numbers: The Secret of Numbers and How They Changed the World
Peter J. Bentley - 2008
Indeed, numbers are part of every discipline in the sciences and the arts.With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:The earliest ideas of numbers and counting Patterns, logic, calculating Natural, perfect, amicable and prime numbers Numerology, the power of numbers, superstition The computer, the Enigma Code Infinity, the speed of light, relativity Complex numbers The Big Bang and Chaos theories The Philosopher's Stone. The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.
The Magical Maze
Ian Stewart - 1997
The Magical Maze is structured on the image of a maze representing the network of connected mathematical ideas that have proved sopowerful and effective in the understanding the natural world. Expanding from Stewart's 1997 Royal Institution Christmas lecture, it covers topics such as numbers, probablity, game theory, patterns and oscillators, as well as knots, computability, chaos and other topics chosen to communicate the intellectual excitement and beauty of mathematics as a subject.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
Painless Algebra
Lynette Long - 1998
The author defines all terms, points out potential pitfalls in algebraic calculation, and makes problem solving a fun activity. New in this edition are painless approaches to understanding and graphing linear equations, solving systems of linear inequalities, and graphing quadratic equations. Barron’s popular Painless Series of study guides for middle school and high school students offer a lighthearted, often humorous approach to their subjects, transforming details that might once have seemed boring or difficult into a series of interesting and mentally challenging ideas. Most titles in the series feature many fun-to-solve “Brain Tickler” problems with answers at the end of each chapter.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..