On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Kurt Gödel - 1992
    Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.

Cybernetics: or the Control and Communication in the Animal and the Machine


Norbert Wiener - 1948
    It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review

Linear Algebra


Stephen H. Friedberg - 1979
     This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.

Limitless Mind: Learn, Lead, and Live Without Barriers


Jo Boaler - 2019
    This notion follows us into adulthood, where we tend to simply accept these established beliefs about our skillsets (i.e. that we don’t have “a math brain” or that we aren’t “the creative type”). These damaging—and as new science has revealed, false—assumptions have influenced all of us at some time, affecting our confidence and willingness to try new things and limiting our choices, and, ultimately, our futures.Stanford University professor, bestselling author, and acclaimed educator Jo Boaler has spent decades studying the impact of beliefs and bias on education. In Limitless Mind , she explodes these myths and reveals the six keys to unlocking our boundless learning potential. Her research proves that those who achieve at the highest levels do not do so because of a genetic inclination toward any one skill but because of the keys that she reveals in the book. Our brains are not “fixed,” but entirely capable of change, growth, adaptability, and rewiring. Want to be fluent in mathematics? Learn a foreign language? Play the guitar? Write a book? The truth is not only that anyone at any age can learn anything, but the act of learning itself fundamentally changes who we are, and as Boaler argues so elegantly in the pages of this book, what we go on to achieve.

Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century


Masha Gessen - 2009
    A prize of one million dollars was offered to anyone who could unravel it, but Perelman declined the winnings, and in doing so inspired journalist Masha Gessen to tell his story. Drawing on interviews with Perelman’s teachers, classmates, coaches, teammates, and colleagues in Russia and the United States—and informed by her own background as a math whiz raised in Russia—Gessen uncovered a mind of unrivaled computational power, one that enabled Perelman to pursue mathematical concepts to their logical (sometimes distant) end. But she also discovered that this very strength turned out to be Perelman's undoing and the reason for his withdrawal, first from the world of mathematics and then, increasingly, from the world in general.

The Book of Numbers: The Secret of Numbers and How They Changed the World


Peter J. Bentley - 2008
    Indeed, numbers are part of every discipline in the sciences and the arts.With 350 illustrations, including diagrams, photographs and computer imagery, the book chronicles the centuries-long search for the meaning of numbers by famous and lesser-known mathematicians, and explains the puzzling aspects of the mathematical world. Topics include:The earliest ideas of numbers and counting Patterns, logic, calculating Natural, perfect, amicable and prime numbers Numerology, the power of numbers, superstition The computer, the Enigma Code Infinity, the speed of light, relativity Complex numbers The Big Bang and Chaos theories The Philosopher's Stone. The Book of Numbers shows enthusiastically that numbers are neither boring nor dull but rather involve intriguing connections, rivalries, secret documents and even mysterious deaths.

Do Polar Bears Get Lonely?: And 101 Other Intriguing Science Questions


New Scientist - 2008
    Following the phenomenal success of Does Anything Eat Wasps? (2005) and the even more spectacularly successful Why Don't Penguins' Feet Freeze? (2006), this latest collection includes a bumper crop of wise and wonderful answers never before seen in book form.As usual, the simplest questions often have the most complex answers - while some that seem the knottiest have very simple explanations. New Scientist's 'Last Word' is regularly voted the magazine's most popular section as it celebrates all questions - the trivial, idiosyncratic, baffling and strange. This all-new and eagerly awaited selection of the best again presents popular science at its most entertaining and enlightening.

My Brain is Open: The Mathematical Journeys of Paul Erdős


Bruce Schechter - 1998
    Hungarian-born Erdős believed that the meaning of life was to prove and conjecture. His work in the United States and all over the world has earned him the titles of the century's leading number theorist and the most prolific mathematician who ever lived. Erdős's important work has proved pivotal to the development of computer science, and his unique personality makes him an unforgettable character in the world of mathematics. Incapable of the smallest of household tasks and having no permanent home or job, he was sustained by the generosity of colleagues and by his own belief in the beauty of numbers. Witty and filled with the sort of mathematical puzzles that intrigued Erdős and continue to fascinate mathematicians today, My Brain Is Open is the story of this strange genius and a journey in his footsteps through the world of mathematics, where universal truths await discovery like hidden treasures and where brilliant proofs are poetry.

For the Love of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics


Walter Lewin - 2011
    “I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.

An Investigation of the Laws of Thought


George Boole - 1854
    A timeless introduction to the field and a landmark in symbolic logic, showing that classical logic can be treated algebraically.

Alice in Quantumland: An Allegory of Quantum Physics


Robert Gilmore - 1994
    Through the allegory of Alice's adventures and encounters, Gilmore makes the essential features of the quantum world clear and accessible. It is a thrilling introduction to some essential, often difficult-to-grasp concepts about the world we inhabit.

Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.

Logicomix: An Epic Search for Truth


Apostolos Doxiadis - 2009
     This graphic novel recounts the spiritual odyssey of philosopher Bertrand Russell. In his agonized search for absolute truth, he crosses paths with thinkers like Gottlob Frege, David Hilbert & Kurt Gödel, & finds a passionate student in Ludwig Wittgenstein. But his most ambitious goal—to establish unshakable logical foundations of mathematics—continues to loom before him. Thru love & hate, peace & war, he persists in the mission threatening to claim both his career & happiness, finally driving him to the brink of insanity. This story is at the same time a historical novel & an accessible explication of some of the biggest ideas of mathematics & modern philosophy. With rich characterizations & atmospheric artwork, it spins the pursuit of such ideas into a satisfying tale. Probing, layered, the book throws light on Russell’s inner struggles while setting them in the context of the timeless questions he tried to answer. At its heart, Logicomix is a story about the conflict between ideal rationality & the flawed fabric of reality.

Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers


Joseph Mazur - 2014
    What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In Enlightening Symbols, popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted.Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics.From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.

Batman and Psychology: A Dark and Stormy Knight


Travis Langley - 2012
    Why does this superhero without superpowers fascinate us? What does that fascination say about us? Batman and Psychology explores these and other intriguing questions about the masked vigilante, including: Does Batman have PTSD?  Why does he fight crime? Why as a vigilante? Why the mask, the bat, and the underage partner? Why are his most intimate relationships with “bad girls” he ought to lock up? And why won't he kill that homicidal, green-haired clown?Gives you fresh insights into the complex inner world of Batman and Bruce Wayne and the life and characters of Gotham CityExplains psychological theory and concepts through the lens of one of the world’s most popular comic book charactersWritten by a psychology professor and “Superherologist” (scholar of superheroes)