Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Computer Networking: A Top-Down Approach


James F. Kurose - 2000
    Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.

From Mathematics to Generic Programming


Alexander A. Stepanov - 2014
    If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge

Thinking Forth


Leo Brodie - 1984
    Published first in 1984, it could be among the timeless classics of computer books, such as Fred Brooks' The Mythical Man-Month and Donald Knuth's The Art of Computer Programming. Many software engineering principles discussed here have been rediscovered in eXtreme Programming, including (re)factoring, modularity, bottom-up and incremental design. Here you'll find all of those and more, such as the value of analysis and design, described in Leo Brodie's down-to-earth, humorous style, with illustrations, code examples, practical real life applications, illustrative cartoons, and interviews with Forth's inventor, Charles H. Moore as well as other Forth thinkers.

The Problem with Software: Why Smart Engineers Write Bad Code


Adam Barr - 2018
    As the size and complexity of commercial software have grown, the gap between academic computer science and industry has widened. It's an open secret that there is little engineering in software engineering, which continues to rely not on codified scientific knowledge but on intuition and experience.Barr, who worked as a programmer for more than twenty years, describes how the industry has evolved, from the era of mainframes and Fortran to today's embrace of the cloud. He explains bugs and why software has so many of them, and why today's interconnected computers offer fertile ground for viruses and worms. The difference between good and bad software can be a single line of code, and Barr includes code to illustrate the consequences of seemingly inconsequential choices by programmers. Looking to the future, Barr writes that the best prospect for improving software engineering is the move to the cloud. When software is a service and not a product, companies will have more incentive to make it good rather than "good enough to ship."

Clean Code: A Handbook of Agile Software Craftsmanship


Robert C. Martin - 2007
    But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.

Get Your Hands Dirty on Clean Architecture: A hands-on guide to creating clean web applications with code examples in Java


Tom Hombergs - 2019
    

Thinking in CSS


Aravind Shenoy - 2014
    Instead of wandering through loads of theory, we will understand CSS more practically so that we can design a webpage using CSS. We have used Notepad for the examples in this book. Alternatively, you can also use Notepad++ or any advanced editor. All that you need to do is copy the code and paste it into Notepad. Upon execution, you will get the output as depicted in the screenshots. Screenshots are provided for each sample code. Coding gets better with practice. The examples in this book are compatible with almost every browser. Instead of using the verbatim code, you can modify the code and see the change in the output, thereby understanding the subtle nuances of CSS. By the end of the book, with practice, you can achieve better things and get more acquainted with CSS.

Smalltalk Best Practice Patterns


Kent Beck - 1996
    This author presents a set of patterns that organize all the informal experience successful Smalltalk programmers have learned the hard way. When programmers understand these patterns, they can write much more effective code. The concept of Smalltalk patterns is introduced, and the book explains why they work. Next, the book introduces proven patterns for working with methods, messages, state, collections, classes and formatting. Finally, the book walks through a development example utilizing patterns. For programmers, project managers, teachers and students -- both new and experienced. This book presents a set of patterns that organize all the informal experience of successful Smalltalk programmers. This book will help you understand these patterns, and empower you to write more effective code.

sed and awk Pocket Reference: Text Processing with Regular Expressions


Arnold Robbins - 2000
    sed, awk, and regular expressions allow programmers and system administrators to automate editing tasks that need to be performed on one or more files, to simplify the task of performing the same edits on multiple files, and to write conversion programs.The sed & awk Pocket Reference is a companion volume to sed & awk, Second Edition, Unix in a Nutshell, Third Edition, and Effective awk Programming, Third Edition. This new edition has expanded coverage of gawk (GNU awk), and includes sections on:An overview of sed and awk's command line syntaxAlphabetical summaries of commands, including nawk and gawkProfiling with pgawkCoprocesses and sockets with gawkInternationalization with gawkA listing of resources for sed and awk usersThis small book is a handy reference guide to the information presented in the larger volumes. It presents a concise summary of regular expressions and pattern matching, and summaries of sed and awk.Arnold Robbins, an Atlanta native now happily living in Israel, is a professional programmer and technical author and coauthor of various O'Reilly Unix titles. He has been working with Unix systems since 1980, and currently maintains gawk and its documentation.

Writing Solid Code


Steve Maguire - 1993
    Focus is on an in-depth analysis and exposition of not-so-obvious coding errors in the sample code provided. The theme is to answer the questions 'How couild I have automatically detected this bug' and 'How could I have prevented this bug'? Chapters include programmer attitudes, techniques and debugging methodology. A particularly revealing chapter is "Treacheries of the Trade", should be required reading for all C maniacs. The author has been a professional programmer for seventeen years and draws heavily (and candidly) on actual coding problems and practices based on years of experience at Microsoft.

Practical C Programming


Steve Oualline - 1992
    Style and debugging also play a tremendous part in creating programs that run well and are easy to maintain. This book teaches you not only the mechanics of programming, but also describes how to create programs that are easy to read, debug, and update.Practical rules are stressed. For example, there are fifteen precedence rules in C (&& comes before || comes before ?:). The practical programmer reduces these to two: Multiplication and division come before addition and subtraction.Contrary to popular belief, most programmers do not spend most of their time creating code. Most of their time is spent modifying someone else's code. This books shows you how to avoid the all-too-common obfuscated uses of C (and also to recognize these uses when you encounter them in existing programs) and thereby to leave code that the programmer responsible for maintenance does not have to struggle with. Electronic Archaeology, the art of going through someone else's code, is described.This third edition introduces popular Integrated Development Environments on Windows systems, as well as UNIX programming utilities, and features a large statistics-generating program to pull together the concepts and features in the language.

Effective Python: 59 Specific Ways to Write Better Python


Brett Slatkin - 2015
    This makes the book random-access: Items are easy to browse and study in whatever order the reader needs. I will be recommending "Effective Python" to students as an admirably compact source of mainstream advice on a very broad range of topics for the intermediate Python programmer. " Brandon Rhodes, software engineer at Dropbox and chair of PyCon 2016-2017" It s easy to start coding with Python, which is why the language is so popular. However, Python s unique strengths, charms, and expressiveness can be hard to grasp, and there are hidden pitfalls that can easily trip you up. " Effective Python " will help you master a truly Pythonic approach to programming, harnessing Python s full power to write exceptionally robust and well-performing code. Using the concise, scenario-driven style pioneered in Scott Meyers best-selling "Effective C++, " Brett Slatkin brings together 59 Python best practices, tips, and shortcuts, and explains them with realistic code examples. Drawing on years of experience building Python infrastructure at Google, Slatkin uncovers little-known quirks and idioms that powerfully impact code behavior and performance. You ll learn the best way to accomplish key tasks, so you can write code that s easier to understand, maintain, and improve. Key features includeActionable guidelines for all major areas of Python 3.x and 2.x development, with detailed explanations and examples Best practices for writing functions that clarify intention, promote reuse, and avoid bugs Coverage of how to accurately express behaviors with classes and objects Guidance on how to avoid pitfalls with metaclasses and dynamic attributes More efficient approaches to concurrency and parallelism Better techniques and idioms for using Python s built-in modules Tools and best practices for collaborative development Solutions for debugging, testing, and optimization in order to improve quality and performance "

Practical Vim: Edit Text at the Speed of Thought


Drew Neil - 2012
    It's available on almost every OS--if you master the techniques in this book, you'll never need another text editor. Practical Vim shows you 120 vim recipes so you can quickly learn the editor's core functionality and tackle your trickiest editing and writing tasks. Vim, like its classic ancestor vi, is a serious tool for programmers, web developers, and sysadmins. No other text editor comes close to Vim for speed and efficiency; it runs on almost every system imaginable and supports most coding and markup languages. Learn how to edit text the "Vim way:" complete a series of repetitive changes with The Dot Formula, using one keystroke to strike the target, followed by one keystroke to execute the change. Automate complex tasks by recording your keystrokes as a macro. Run the same command on a selection of lines, or a set of files. Discover the "very magic" switch, which makes Vim's regular expression syntax more like Perl's. Build complex patterns by iterating on your search history. Search inside multiple files, then run Vim's substitute command on the result set for a project-wide search and replace. All without installing a single plugin! You'll learn how to navigate text documents as fast as the eye moves--with only a few keystrokes. Jump from a method call to its definition with a single command. Use Vim's jumplist, so that you can always follow the breadcrumb trail back to the file you were working on before. Discover a multilingual spell-checker that does what it's told.Practical Vim will show you new ways to work with Vim more efficiently, whether you're a beginner or an intermediate Vim user. All this, without having to touch the mouse.What You Need: Vim version 7

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.