Book picks similar to
Linear Systems Theory by João P. Hespanha
control
engineering
reference-work
systems-and-control
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Programming in Haskell
Graham Hutton - 2006
This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.
The Hundred-Page Machine Learning Book
Andriy Burkov - 2019
During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.
Calculus
Gilbert Strang - 1991
The author has a direct style. His book presents detailed and intensive explanations. Many diagrams and key examples are used to aid understanding, as well as the application of calculus to physics and engineering and economics. The text is well organized, and it covers single variable and multivariable calculus in depth. An instructor's manual and student guide are available online at http: //ocw.mit.edu/ans7870/resources/Strang/....
Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers
Rudra Pratap - 2005
Its broad appeal lies in its interactive environment with hundreds of built-in functions for technical computation, graphics, and animation. In addition, it provides easy extensibility with its own high-level programming language. Enhanced by fun and appealing illustrations, Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers employs a casual, accessible writing style that shows users how to enjoy using MATLAB.
Microwave Engineering
David M. Pozar - 1990
The author successfully introduces Maxwell's equations, wave propagation, network analysis, and design principles as applied to modern microwave engineering. A considerable amount of material in this book is related to the design of specific microwave circuits and components, for both practical and motivational value. It also presents the analysis and logic behind these designs so that the reader can see and understand the process of applying the fundamental concepts to arrive at useful results. The derivations are well laid out and the majority of each chapter's formulas are displayed in a nice tabular format every few pages. This Third Edition offers greatly expanded coverage with new material on: Noise; Nonlinear effects; RF MEMs; transistor power amplifiers; FET mixers; oscillator phase noise; transistor oscillators and frequency multiplier.
Advanced Engineering Mathematics
K.A. Stroud - 2003
You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Civil Engineering Reference Manual for the PE Exam
Michael R. Lindeburg - 1990
Updated to cover the new Transportation and Structural codes. As the most comprehensive reference and study guide available for engineers preparing for the morning and afternoon topics on the Civil PE exam, the 11th edition of the Civil Engineering Reference Manual provides a concentrated review of the exam topics. No other exam-focused publication is more complete.
The Most Trusted Reference for the Civil PE Exam is also the Most Up-To-Date
A complete introduction to the exam format and content A suggested study schedule, plus tips for successful exam preparation Nearly 500 solved example problems Hundreds of key tables, charts, and figures at your fingertips An easy-to-use index and full glossary for quick reference Perfect for post-exam reference
What's New in the 11th Edition
4 new construction engineering chapters Over 35 updated chapters—including extensively revised structural and transportation chapters 100 new equations Over 300 new, easy-to-use index entriesExam Topics CoveredConstruction—NewGeotechnical—UpdatedStructural—UpdatedTransportation—UpdatedWater Resources & Environmental—Updated_____________________________Since 1975 more than 2 million people preparing for their engineering, surveying, architecture, LEED®, interior design, and landscape architecture exams have entrusted their exam prep to PPI. For more information, visit us at www.ppi2pass.com.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Introduction to Electrodynamics
David J. Griffiths - 1981
This work offers accesible coverage of the fundamentals of electrodynamics, enhanced with with discussion points, examples and exercises.
Introduction to Operations Research [with Revised CD-ROM]
Frederick S. Hillier - 1967
This edition also features the developments in Operations Research, such as metaheuristics, simulation, and spreadsheet modeling.
The Feynman Lectures on Physics Vol 1
Richard P. Feynman - 1963
This edition, which was prepared by Kip S. Thorne (Feynman Professor of Theoretical Physics at California Institute of Technology), fully incorporates all the errata and corrections gathered (but never used in a published edition) by Feynman.
Bayes Theorem Examples: An Intuitive Guide
Scott Hartshorn - 2016
Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.