Book picks similar to
Self-Stabilization by Shlomi Dolev
it-wikipedia
rack_038
software
stem
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa
The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation
Gary William Flake - 1998
Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation.Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.
Beyond the Twelve-Factor App Exploring the DNA of Highly Scalable, Resilient Cloud Applications
Kevin Hoffman - 2016
Cloud computing is rapidly transitioning from a niche technology embraced by startups and tech-forward companies to the foundation upon which enterprise systems build their future. In order to compete in today’s marketplace, organizations large and small are embracing cloud architectures and practices.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
The Hundred-Page Machine Learning Book
Andriy Burkov - 2019
During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.
Coding Interview Questions
Narasimha Karumanchi - 2012
Peeling Data Structures and Algorithms: * Programming puzzles for interviews * Campus Preparation * Degree/Masters Course Preparation * Instructor's * GATE Preparation * Big job hunters: Microsoft, Google, Amazon, Yahoo, Flip Kart, Adobe, IBM Labs, Citrix, Mentor Graphics, NetApp, Oracle, Webaroo, De-Shaw, Success Factors, Face book, McAfee and many more * Reference Manual for working people
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Bandit Algorithms for Website Optimization
John Myles White - 2012
Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success.This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website.Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithmsDevelop a unit testing framework for debugging bandit algorithmsGet additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials
Web Scalability for Startup Engineers
Artur Ejsmont - 2015
With a focus on core concepts and best practices rather than on individual languages, platforms, or technologies, Web Scalability for Startup Engineers describes how infrastructure and software architecture work together to support a scalable environment.You'll learn, step by step, how scalable systems work and how to solve common challenges. Helpful diagrams are included throughout, and real-world examples illustrate the concepts presented. Even if you have limited time and resources, you can successfully develop and deliver robust, scalable web applications with help from this practical guide.Learn the key principles of good software design required for scalable systemsBuild the front-end layer to sustain the highest levels of concurrency and request ratesDesign and develop web services, including REST-ful APIsEnable a horizontally scalable data layerImplement caching best practicesLeverage asynchronous processing, messaging, and event-driven architectureStructure, index, and store data for optimized searchExplore other aspects of scalability, such as automation, project management, and agile teams
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Docker in Action
Jeff Nickoloff - 2015
Create a tiny virtual environment, called a container, for your application that includes only its particular set of dependencies. The Docker engine accounts for, manages, and builds these containers through functionality provided by the host operating system. Software running inside containers share the Linux OS and other resources, such as libraries, making their footprints radically smaller, and the containerized applications are easy to install, manage, and remove. Developers can package their applications without worrying about environment-specific deployment concerns, and the operations team gets cleaner, more efficient systems across the board. Better still, Docker is free and open source.Docker in Action teaches readers how to create, deploy, and manage applications hosted in Docker containers. The book starts with a clear explanation of the Docker model of virtualization, comparing this approach to the traditional hypervisor model. Developers will learn how to package applications in containers, including specific techniques for testing and distributing applications via Docker Hub and other registries. Readers will learn how to take advantage of the Linux OS features that Docker uses to run programs securely, and how to manage shared resources. Using carefully-designed examples, the book teaches you how to orchestrate containers and applications from installation to removal. Along the way, you'll learn techniques for using Docker on systems ranging from your personal dev-and-test machine to full-scale cloud deployments.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Numerical Recipes in C: The Art of Scientific Computing
William H. Press - 1988
In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.
Fire in the Valley: The Making of the Personal Computer
Paul Freiberger - 1984
It reveals the visions they shared, the sacrifices they made, and the rewards they reaped.