Book picks similar to
Numerical Analysis for Statisticians by Kenneth Lange
mathematics
math
probability
statistical-science
Introduction to Probability
Joseph K. Blitzstein - 2014
The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Principles of Statistics
M.G. Bulmer - 1979
There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again for the classroom or for self-study.Principles of Statistics was created primarily for the student of natural sciences, the social scientist, the undergraduate mathematics student, or anyone familiar with the basics of mathematical language. It assumes no previous knowledge of statistics or probability; nor is extensive mathematical knowledge necessary beyond a familiarity with the fundamentals of differential and integral calculus. (The calculus is used primarily for ease of notation; skill in the techniques of integration is not necessary in order to understand the text.)Professor Bulmer devotes the first chapters to a concise, admirably clear description of basic terminology and fundamental statistical theory: abstract concepts of probability and their applications in dice games, Mendelian heredity, etc.; definitions and examples of discrete and continuous random variables; multivariate distributions and the descriptive tools used to delineate them; expected values; etc. The book then moves quickly to more advanced levels, as Professor Bulmer describes important distributions (binomial, Poisson, exponential, normal, etc.), tests of significance, statistical inference, point estimation, regression, and correlation. Dozens of exercises and problems appear at the end of various chapters, with answers provided at the back of the book. Also included are a number of statistical tables and selected references.
The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Jason Rosenhouse - 2009
Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.
Calculus: The Classic Edition
Earl W. Swokowski - 1991
Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.
Calculated Risks: How to Know When Numbers Deceive You
Gerd Gigerenzer - 2002
G. Wells predicted that statistical thinking would be as necessary for citizenship in a technological world as the ability to read and write. But in the twenty-first century, we are often overwhelmed by a baffling array of percentages and probabilities as we try to navigate in a world dominated by statistics. Cognitive scientist Gerd Gigerenzer says that because we haven't learned statistical thinking, we don't understand risk and uncertainty. In order to assess risk -- everything from the risk of an automobile accident to the certainty or uncertainty of some common medical screening tests -- we need a basic understanding of statistics.Astonishingly, doctors and lawyers don't understand risk any better than anyone else. Gigerenzer reports a study in which doctors were told the results of breast cancer screenings and then were asked to explain the risks of contracting breast cancer to a woman who received a positive result from a screening. The actual risk was small because the test gives many false positives. But nearly every physician in the study overstated the risk. Yet many people will have to make important health decisions based on such information and the interpretation of that information by their doctors.Gigerenzer explains that a major obstacle to our understanding of numbers is that we live with an illusion of certainty. Many of us believe that HIV tests, DNA fingerprinting, and the growing number of genetic tests are absolutely certain. But even DNA evidence can produce spurious matches. We cling to our illusion of certainty because the medical industry, insurance companies, investment advisers, and election campaigns have become purveyors of certainty, marketing it like a commodity.To avoid confusion, says Gigerenzer, we should rely on more understandable representations of risk, such as absolute risks. For example, it is said that a mammography screening reduces the risk of breast cancer by 25 percent. But in absolute risks, that means that out of every 1,000 women who do not participate in screening, 4 will die; while out of 1,000 women who do, 3 will die. A 25 percent risk reduction sounds much more significant than a benefit that 1 out of 1,000 women will reap.This eye-opening book explains how we can overcome our ignorance of numbers and better understand the risks we may be taking with our money, our health, and our lives.
Bayes' Rule: A Tutorial Introduction to Bayesian Analysis
James V. Stone - 2013
Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, intuitive visual representations of real-world examples are used to show how Bayes' rule is actually a form of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices who wish to gain an intuitive understanding of Bayesian analysis. As an aid to understanding, online computer code (in MatLab, Python and R) reproduces key numerical results and diagrams.Stone's book is renowned for its visually engaging style of presentation, which stems from teaching Bayes' rule to psychology students for over 10 years as a university lecturer.
Probability And Statistics For Engineers And Scientists
Ronald E. Walpole - 1978
Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Quantitative Aptitude for Competitive Examinations
R.S. Aggarwal - 2017
The item is Brand New Paperback International/South Asian Edition textbook with 100 % identical Contents as US Edition. Shipped Same Day. Will be dispatched fast. 100% Satisfaction. Great Customer Service, Buy with Confidence, Front Cover May Differ. Ships to PO or APO. May have printed "NOT FOR SALE OUTSIDE of INDIA" or Territorial Disclaimer.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan
Richard McElreath - 2015
Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Pure Mathematics 1: Advanced Level Mathematics
Hugh Neill - 2002
Pure Mathematics 1 corresponds to unit P1. It covers quadratics, functions, coordinate geometry, circular measure, trigonometry, vectors, series, differentiation and integration.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Introduction to Statistical Quality Control
Douglas C. Montgomery - 1985
It provides comprehensive coverage of the subject from basic principles to state-of-art concepts and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of both product and nonproduct situations. While statistical techniques are emphasized throughout, the book has a strong engineering and management orientation. Guidelines are given throughout the book for selecting the proper type of statistical technique to use in a wide variety of product and nonproduct situations. By presenting theory, and supporting the theory with clear and relevant examples, Montgomery helps the reader to understand the big picture of important concepts. Updated to reflect contemporary practice and provide more information on management aspects of quality improvement.
The Eudaemonic Pie
Thomas A. Bass - 1985
“The result is a veritable pi