Book picks similar to
Astronomy on the Personal Computer [With CDROM] by Oliver Montenbruck
computers
donnacha-get-this
science-mathematics
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics
Paul Teetor - 2011
The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author
The Universal Computer: The Road from Leibniz to Turing
Martin D. Davis - 2000
How can today's computers perform such a bewildering variety of tasks if computing is just glorified arithmetic? The answer, as Martin Davis lucidly illustrates, lies in the fact that computers are essentially engines of logic. Their hardware and software embody concepts developed over centuries by logicians such as Leibniz, Boole, and Godel, culminating in the amazing insights of Alan Turing. The Universal Computer traces the development of these concepts by exploring with captivating detail the lives and work of the geniuses who first formulated them. Readers will come away with a revelatory understanding of how and why computers work and how the algorithms within them came to be.
Computer Power and Human Reason: From Judgment to Calculation
Joseph Weizenbaum - 1976
A classic text by the author who developed ELIZA, a natural-language processing system.
Smarter Than Us: The Rise of Machine Intelligence
Stuart Armstrong - 2014
The power of an artificial intelligence (AI) comes from its intelligence, not physical strength and laser guns. Humans steer the future not because we're the strongest or the fastest but because we're the smartest. When machines become smarter than humans, we'll be handing them the steering wheel. What promises—and perils—will these powerful machines present? Stuart Armstrong’s new book navigates these questions with clarity and wit.Can we instruct AIs to steer the future as we desire? What goals should we program into them? It turns out this question is difficult to answer! Philosophers have tried for thousands of years to define an ideal world, but there remains no consensus. The prospect of goal-driven, smarter-than-human AI gives moral philosophy a new urgency. The future could be filled with joy, art, compassion, and beings living worthwhile and wonderful lives—but only if we’re able to precisely define what a "good" world is, and skilled enough to describe it perfectly to a computer program.AIs, like computers, will do what we say—which is not necessarily what we mean. Such precision requires encoding the entire system of human values for an AI: explaining them to a mind that is alien to us, defining every ambiguous term, clarifying every edge case. Moreover, our values are fragile: in some cases, if we mis-define a single piece of the puzzle—say, consciousness—we end up with roughly 0% of the value we intended to reap, instead of 99% of the value.Though an understanding of the problem is only beginning to spread, researchers from fields ranging from philosophy to computer science to economics are working together to conceive and test solutions. Are we up to the challenge?A mathematician by training, Armstrong is a Research Fellow at the Future of Humanity Institute (FHI) at Oxford University. His research focuses on formal decision theory, the risks and possibilities of AI, the long term potential for intelligent life (and the difficulties of predicting this), and anthropic (self-locating) probability. Armstrong wrote Smarter Than Us at the request of the Machine Intelligence Research Institute, a non-profit organization studying the theoretical underpinnings of artificial superintelligence.
Social and Economic Networks
Matthew O. Jackson - 2008
The many aspects of our lives that are governed by social networks make it critical to understand how they impact behavior, which network structures are likely to emerge in a society, and why we organize ourselves as we do. In Social and Economic Networks, Matthew Jackson offers a comprehensive introduction to social and economic networks, drawing on the latest findings in economics, sociology, computer science, physics, and mathematics. He provides empirical background on networks and the regularities that they exhibit, and discusses random graph-based models and strategic models of network formation. He helps readers to understand behavior in networked societies, with a detailed analysis of learning and diffusion in networks, decision making by individuals who are influenced by their social neighbors, game theory and markets on networks, and a host of related subjects. Jackson also describes the varied statistical and modeling techniques used to analyze social networks. Each chapter includes exercises to aid students in their analysis of how networks function.This book is an indispensable resource for students and researchers in economics, mathematics, physics, sociology, and business.
Big Data for Dummies
Judith Hurwitz - 2013
Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work.Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
Discrete Mathematics and Its Applications
Kenneth H. Rosen - 2000
These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.
Cybernetics: or the Control and Communication in the Animal and the Machine
Norbert Wiener - 1948
It is a ‘ must’ book for those in every branch of science . . . in addition, economists, politicians, statesmen, and businessmen cannot afford to overlook cybernetics and its tremendous, even terrifying implications. "It is a beautifully written book, lucid, direct, and despite its complexity, as readable by the layman as the trained scientist." -- John B. Thurston, "The Saturday Review of Literature" Acclaimed one of the "seminal books . . . comparable in ultimate importance to . . . Galileo or Malthus or Rousseau or Mill," "Cybernetics" was judged by twenty-seven historians, economists, educators, and philosophers to be one of those books published during the "past four decades", which may have a substantial impact on public thought and action in the years ahead." -- Saturday Review
Microsoft Excel Essential Hints and Tips: Fundamental hints and tips to kick start your Excel skills
Diane Griffiths - 2015
We look at how to set up your spreadsheet, getting data into Excel, formatting your spreadsheet, a bit of display management and how to print and share your spreadsheets. Learn Excel Visually The idea of these short handy bite-size books is to provide you with what I have found to be most useful elements of Excel within my day-to-day work and life. I don’t tell you about all the bells and whistles – just what you need on a daily basis. These eBooks are suitable for anyone who is looking to learn Excel and wants to increase their productivity and efficiency, both at work and home. Please bear in mind I don’t cover all functionality of all areas, the point is that I strip out anything that’s not useful and only highlight the functionality that I believe is useful on a daily basis. Don’t buy a huge textbook which you’ll never fully read, pick an eBook which is most relevant to your current learning, read it, apply it and then get on with your day.
Programming with Java: A Primer
E. Balagurusamy - 2006
The language concepts are aptly explained in simple and easy-to-understand style, supported with examples, illustrations and programming and debugging exercises.
Complexity: Life at the Edge of Chaos
Roger Lewin - 1992
. . . The subject of complexity is vital and controversial. This book is important and beautifully done."—Stephen Jay Gould"[Complexity] is that curious mix of complication and organization that we find throughout the natural and human worlds: the workings of a cell, the structure of the brain, the behavior of the stock market, the shifts of political power. . . . It is time science . . . thinks about meaning as well as counting information. . . . This is the core of the complexity manifesto. Read it, think about it . . . but don't ignore it."—Ian Stewart, NatureThis second edition has been brought up to date with an essay entitled "On the Edge in the Business World" and an interview with John Holland, author of Emergence: From Chaos to Order.
Make Your Own Neural Network
Tariq Rashid - 2016
Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
HTML Black Book: The Programmer's Complete HTML Reference Book
Steven Holzner - 2000
An immediate and comprehensive answer source, rather than a diffuse tutorial, for serious programmers who want to see difficult material covered in depth without the fluff. Discusses XML, dynamic HTML, JavaScript, Java, and Perl CGI programming to create a full Web site programming package. Written by the author of several successful titles published by The Coriolis Group.