Learning Python


Mark Lutz - 2003
    Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.

Hacking: The Art of Exploitation


Jon Erickson - 2003
    This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.

JavaScript: The Definitive Guide


David Flanagan - 1996
    This book is both an example-driven programmer's guide and a keep-on-your-desk reference, with new chapters that explain everything you need to know to get the most out of JavaScript, including:Scripted HTTP and Ajax XML processing Client-side graphics using the canvas tag Namespaces in JavaScript--essential when writing complex programs Classes, closures, persistence, Flash, and JavaScript embedded in Java applicationsPart I explains the core JavaScript language in detail. If you are new to JavaScript, it will teach you the language. If you are already a JavaScript programmer, Part I will sharpen your skills and deepen your understanding of the language.Part II explains the scripting environment provided by web browsers, with a focus on DOM scripting with unobtrusive JavaScript. The broad and deep coverage of client-side JavaScript is illustrated with many sophisticated examples that demonstrate how to:Generate a table of contents for an HTML document Display DHTML animations Automate form validation Draw dynamic pie charts Make HTML elements draggable Define keyboard shortcuts for web applications Create Ajax-enabled tool tips Use XPath and XSLT on XML documents loaded with Ajax And much morePart III is a complete reference for core JavaScript. It documents every class, object, constructor, method, function, property, and constant defined by JavaScript 1.5 and ECMAScript Version 3.Part IV is a reference for client-side JavaScript, covering legacy web browser APIs, the standard Level 2 DOM API, and emerging standards such as the XMLHttpRequest object and the canvas tag.More than 300,000 JavaScript programmers around the world have made this their indispensable reference book for building JavaScript applications."A must-have reference for expert JavaScript programmers...well-organized and detailed."-- Brendan Eich, creator of JavaScript

Ruby Cookbook


Lucas Carlson - 2006
    It gives you hundreds of solutions to real-world problems, with clear explanations and thousands of lines of code you can use in your own projects.From data structures and algorithms, to integration with cutting-edge technologies, the Ruby Cookbook has something for every programmer. Beginners and advanced Rubyists alike will learn how to program with:Strings and numbersArrays and hashesClasses, modules, and namespacesReflection and metaprogrammingXML and HTML processingRuby on Rails (including Ajax integration)DatabasesGraphicsInternet services like email, SSH, and BitTorrentWeb servicesMultitaskingGraphical and terminal interfacesIf you need to write a web application, this book shows you how to get started with Rails. If you're a system administrator who needs to rename thousands of files, you'll see how to use Ruby for this and other everyday tasks. You'll learn how to read and write Excel spreadsheets, classify text with Bayesian filters, and create PDF files. We've even included a few silly tricks that were too cool to leave out, like how to blink the lights on your keyboard.The Ruby Cookbook is the most useful book yet written about Ruby. When you need to solve a problem, don't reinvent the wheel: look it up in the Cookbook.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

Understanding Ecmascript 6: The Definitive Guide for JavaScript Developers


Nicholas C. Zakas - 2016
    In Understanding ECMAScript 6, expert developer Nicholas C. Zakas provides a complete guide to the object types, syntax, and other exciting changes that ECMAScript 6 brings to JavaScript. Every chapter is packed with example code that works in any JavaScript environment so you'll be able to see new features in action. You'll learn:How ECMAScript 6 class syntax relates to more familiar JavaScript conceptsWhat makes iterators and generators usefulHow arrow functions differ from regular functionsWays to store data with sets, maps, and moreThe power of inheritanceHow to improve asynchronous programming with promisesHow modules change the way you organize codeWhether you're a web developer or a Node.js developer, you'll find Understanding ECMAScript 6 indispensable on your journey from ECMAScript 5 to ECMAScript 6.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations


Gene Kim - 2015
    For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud.And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day.Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace."Table of contentsPrefaceSpreading the Aha! MomentIntroductionPART I: THE THREE WAYS1. Agile, continuous delivery and the three ways2. The First Way: The Principles of Flow3. The Second Way: The Principle of Feedback4. The Third Way: The Principles of Continual LearningPART II: WHERE TO START5. Selecting which value stream to start with6. Understanding the work in our value stream…7. How to design our organization and architecture8. How to get great outcomes by integrating operations into the daily work for developmentPART III: THE FIRST WAY: THE TECHNICAL PRACTICES OF FLOW9. Create the foundations of our deployment pipeline10. Enable fast and reliable automated testing11. Enable and practice continuous integration12. Automate and enable low-risk releases13. Architect for low-risk releasesPART IV: THE SECOND WAY: THE TECHNICAL PRACTICES OF FEEDBACK14*. Create telemetry to enable seeing abd solving problems15. Analyze telemetry to better anticipate problems16. Enable feedbackso development and operation can safely deploy code17. Integrate hypothesis-driven development and A/B testing into our daily work18. Create review and coordination processes to increase quality of our current workPART V: THE THRID WAY: THE TECHNICAL PRACTICES OF CONTINUAL LEARNING19. Enable and inject learning into daily work20. Convert local discoveries into global improvements21. Reserve time to create organizational learning22. Information security as everyone’s job, every day23. Protecting the deployment pipelinePART VI: CONCLUSIONA call to actionConclusion to the DevOps HandbookAPPENDICES1. The convergence of Devops2. The theory of constraints and core chronic conflicts3. Tabular form of downward spiral4. The dangers of handoffs and queues5. Myths of industrial safety6. The Toyota Andon Cord7. COTS Software8. Post-mortem meetings9. The Simian Army10. Transparent uptimeAdditional ResourcesEndnotes

Pragmatic Thinking and Learning: Refactor Your Wetware


Andy Hunt - 2008
    Not in an editor, IDE, or design tool. You're well educated on how to work with software and hardware, but what about wetware--our own brains? Learning new skills and new technology is critical to your career, and it's all in your head. In this book by Andy Hunt, you'll learn how our brains are wired, and how to take advantage of your brain's architecture. You'll learn new tricks and tips to learn more, faster, and retain more of what you learn. You need a pragmatic approach to thinking and learning. You need to Refactor Your Wetware. Programmers have to learn constantly; not just the stereotypical new technologies, but also the problem domain of the application, the whims of the user community, the quirks of your teammates, the shifting sands of the industry, and the evolving characteristics of the project itself as it is built. We'll journey together through bits of cognitive and neuroscience, learning and behavioral theory. You'll see some surprising aspects of how our brains work, and how you can take advantage of the system to improve your own learning and thinking skills.In this book you'll learn how to:Use the Dreyfus Model of Skill Acquisition to become more expertLeverage the architecture of the brain to strengthen different thinking modesAvoid common "known bugs" in your mindLearn more deliberately and more effectivelyManage knowledge more efficientlyPrinted in full color.

Python Tricks: A Buffet of Awesome Python Features


Dan Bader - 2017
    Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today. Who Should Read This Book: If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review. If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2. If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista. If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge. What Python Developers Say About The Book: "I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

Designing Data-Intensive Applications


Martin Kleppmann - 2015
    Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords?In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures

Practical Django Projects


James Bennett - 2008
    You'll work through the development of each project, implementing and running the applications while learning new features along the way.Web frameworks are playing a major role in the creation of today's most compelling web applications, because they automate many of the tedious tasks, allowing developers to instead focus on providing users with creative and powerful features. Python developers have been particularly fortunate in this area, having been able to take advantage of Django, a very popular open source web framework whose stated goal is to make it easier to build better web applications more quickly with less code.Practical Django Projects is the first book to introduce this popular framework by way of a series of realworld projects. What you'll learn Capitalize upon Django's welldefined framework architecture to build web applications faster than ever before Learn by doing by working through the creation of three realworld projects, including a content management system, blog, and social networking site Build userfriendly web sites with wellstructured URLs, session tracking, and syndication options Let Django handle tedious tasks such as database interaction while you focus on building compelling applications Who this book is forWeb developers seeking to use the powerful Django framework to build powerful web sites. "

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

The Art of Computer Programming, Volume 1: Fundamental Algorithms


Donald Ervin Knuth - 1973
     -Byte, September 1995 I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up. -Charles Long If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing. -Bill Gates It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers. -Jonathan Laventhol This first volume in the series begins with basic programming concepts and techniques, then focuses more particularly on information structures-the representation of information inside a computer, the structural relationships between data elements and how to deal with them efficiently. Elementary applications are given to simulation, numerical methods, symbolic computing, software and system design. Dozens of simple and important algorithms and techniques have been added to those of the previous edition. The section on mathematical preliminaries has been extensively revised to match present trends in research. Ebook (PDF version) produced by Mathematical Sciences Publishers (MSP), http: //msp.org

Design Patterns: Elements of Reusable Object-Oriented Software


Erich Gamma - 1994
    Previously undocumented, these 23 patterns allow designers to create more flexible, elegant, and ultimately reusable designs without having to rediscover the design solutions themselves.The authors begin by describing what patterns are and how they can help you design object-oriented software. They then go on to systematically name, explain, evaluate, and catalog recurring designs in object-oriented systems. With Design Patterns as your guide, you will learn how these important patterns fit into the software development process, and how you can leverage them to solve your own design problems most efficiently. Each pattern describes the circumstances in which it is applicable, when it can be applied in view of other design constraints, and the consequences and trade-offs of using the pattern within a larger design. All patterns are compiled from real systems and are based on real-world examples. Each pattern also includes code that demonstrates how it may be implemented in object-oriented programming languages like C++ or Smalltalk.