Math Through the Ages: A Gentle History for Teachers and Others


William P. Berlinghoff - 2002
    Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."

The Theory of Everything: The Quest to Explain All Reality


Don Lincoln - 2018
    He was trying to find an equation that explained all physical reality - a theory of everything. He failed, but others have taken up the challenge in a remarkable quest that is shedding light on unsuspected secrets of the cosmos.Experimental physicist and award-winning educator Dr. Don Lincoln of the Fermi National Accelerator Laboratory takes you on this exciting journey in The Theory of Everything: The Quest to Explain All Reality. Suitable for the intellectually curious at all levels and assuming no background beyond basic high-school math, these 24 half-hour lectures cover recent developments at the forefront of particle physics and cosmology, while delving into the history of the centuries-long search for this holy grail of science.You trace the dream of a theory of everything through Newton, Maxwell, Einstein, Bohr, Schrödinger, Feynman, Gell-Mann, Weinberg, and other great physicists, charting their progress toward an all-embracing, unifying theory. Their resulting equations are the masterpieces of physics, which Dr. Lincoln explains in fascinating and accessible detail. Studying them is like touring a museum of great works of art - works that are progressing toward an ultimate, as-yet-unfinished masterpiece.Listening Length: 12 hours and 21 minutes

Math on Trial: How Numbers Get Used and Abused in the Courtroom


Leila Schneps - 2013
    Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.

E=MC2: Simple Physics: Why Balloons Rise, Apples Fall & Golf BallsGo Awry


Jeff Stewart - 2010
    With amusing examples from film, TV, and history, learn how physics affects everything in your surroundings--without the use of mind-bending math or the need for a particle accelerator. With E=MC2, you'll learn: When forces balance: Simple answers to questions such as, "Why do balloons rise while apples fall?" The Good, the Bad, and the Impossible: Why The Good, the Bad, and the Ugly is full of absurdities. (For someone whose characters often uphold the law, Clint Eastwood certainly defies the laws of physics in this film.) AC/DC: but only AC really rocks: Alternating current (AC) is much more complicated than direct current (DC). The voltage is constantly moving between positive and negative; the current therefore flows one way, and then the other (rocking back and forth). Why do I feel this warm glow?: The theory behind how the first stars were born General Relativity and GPS: The strange result of gravity on time is well proven. Compared to the interminable time you experience while stuck in a traffic jam, time literally runs faster (because gravity is weaker) in the orbiting GPS satellites that help your GPS system get its fix. At the speed of light: A refresher on the theory of relativity and an understanding of why--a hundred years later--Einstein's physics still points the way in cutting-edge research. Yu again: In the martial arts movie Crouching Tiger, Hidden Dragon, the rebellious young heroine, Jen Yu, blocks an attacker with her hand without standing or bracing herself. All the while, she holds a cup of tea in her other hand and doesn't spill a drop. Find out why kinetic energy and scalar quantity make her move impossible. It's physics for the rest of us. So why not come along for the ride? Advance at the speed of light through the fundamental laws of physics as they were discovered, proven wrong, and revolutionized. Make this and all of the Blackboard Books(tm) a permanent fixture on your shelf, and you'll have instant access to a breadth of knowledge. Whether you need homework help or want to win that trivia game, this series is the trusted source for fun facts.

The Quantum Zoo: A Tourist's Guide to the Neverending Universe


Marcus Chown - 2006
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realize that 1 per cent of the static on a TV tuned between stations is the relic of the Big Bang? These and many other remarkable facts about the world are direct consequences of quantum physics and relativity. Quantum theory has literally made the modern world possible. Not only has it given us lasers, computers, and nuclear reactors, but it has provided an explanation of why the sun shines and why the ground beneath our feet is solid. Despite this, however, quantum theory and relativity remain a patchwork of fragmented ideas, vaguely understood at best and often utterly mysterious. average person. Author Marcus Chown emphatically disagrees. As Einstein himself said, Most of the fundamental ideas of science are essentially simple and may, as a rule, be expressed in a language comprehensible to everyone. If you think that the marvels of modern physics have passed you by, it is not too late. In Chown's capable hands, quantum physics and relativity are not only painless but downright fun. So sit back, relax, and get comfortable as an adept and experienced science communicator brings you quickly up to speed on some of the greatest ideas in the history of human thought.

All the Mathematics You Missed


Thomas A. Garrity - 2001
    This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

The Drunkard's Walk: How Randomness Rules Our Lives


Leonard Mlodinow - 2008
    From the classroom to the courtroom and from financial markets to supermarkets, Mlodinow's intriguing and illuminating look at how randomness, chance, and probability affect our daily lives will intrigue, awe, and inspire.

Astronomy


Andrew Fraknoi - 2012
    The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.

Time And Eternity: Exploring God's Relationship To Time


William Lane Craig - 2001
    Craig has done a great work, and it is marvelous that now the philosophy of religion is engaging with the philosophy of science to the great benefit of both.--John R. LucasFellow of Merton College, Oxford University Time and Eternity offers a comprehensive discussion of the problems in the concepts of time and eternity on the basis of an extraordinary familiarity with a vast number of recent contributions to this issue from scientists and philosophers. The argument is subtle and precise. Particularly important are the sections on the impact of the different versions of relativity theory on the concept of time.... The book offers a plausible argument for a realistic conception of temporal process and for God's involvement in the temporal distinctions and processes because of His presence in His creation.--Wolfhart PannenbergProfessor of Systematic TheologyLudwig Maximilliens Universitaet-Muenchen, Germany As a scientist doing theoretical research in gravitational physics and quantum cosmology, I found Dr. Craig's thoughtful book highly interesting. He has carefully given arguments defending several different viewpoints for each of the many issues about time that he discusses, followed by critiques in which he emphasizes his own opinion. Reading Time and Eternity has forced me to develop better arguments for my own opinions (which differ considerably from Craig's).... I am certain that Time and Eternity will also stimulate your thinking about this fascinating subject and your appreciation for the God who created time as part of the marvelous universe He has given us.--Don N. PageProfessor of Physics and Fellow of the Cosmology and Gravitation Program of the Canadian Institute for Advanced ResearchUniversity of Alberta, Edmonton, Alberta, Canada William Lane Craig is one the leading philosophers of religion and one of the leading philosophers of time. In this book, he combines his expertise in these areas to produce an original, erudite, and accessible theory of time and God that will be of great interest to both the general public and scholars. It is a rewarding experience to read through this brilliant and well-researched book by one of the most learned and creative thinkers of our era.--Quentin SmithProfessor of Philosophy, Western Michigan University In Time and Eternity, William Lane Craig defends the remarkable conclusion that "God is timeless without creation and temporal since creation." Craig argues his case philosophically by carefully weighing evidence for and against divine temporality and personhood in light of dynamic versus static theories of time and their warrants, in turn, in a Lorentzian interpretation of special relativity and an objective, mind-independent theory of becoming, including fascinating excursions into Big Bang cosmology and the philosophy of mathematics. As the latest in his series of ground-breaking books, Time and Eternity summarizes and extends Craig's previous technical arguments and conveys them to a more general audience. It is a must-read for anyone seriously interested in the problem of time and eternity in Christian philosophy.--Robert RussellProfessor of Theology and ScienceGraduate Theological Union, Berkeley, Calif. The nature of time is a continuing source of puzzlement both to science and in everyday life. It is also an important issue in theological understandings of the nature of God. In this interesting book, Professor Craig tackles this complex set of topics in a clear way. His discussion of the interrelated scientific, philosophical, and theological issues clears up many previous misconceptions and proposes a plausible understanding of the relation of God to time and eternity that many will find helpful.--George EllisProfessor of Mathematics and Applied MathematicsUniversity of Capetown

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

The Many Worlds of Hugh Everett III: Multiple Universes, Mutual Assured Destruction, and the Meltdown of a Nuclear Family


Peter Byrne - 2010
    Using Everett's unpublished papers (recently discovered in his son's basement) and dozens of interviews with his friends, colleagues, and surviving family members, Byrne paints, for the general reader, a detailed portrait of the genius who invented an astonishing way of describing our complex universe from the inside. Everett's mathematical model (called the "universal wave function") treats all possible events as "equally real," and concludes that countless copies of every person and thing exist in all possible configurations spread over an infinity of universes: many worlds. Afflicted by depression and addictions, Everett strove to bring rational order to the professional realms in which he played historically significant roles. In addition to his famous interpretation of quantum mechanics, Everett wrote a classic paper in game theory; created computer algorithms that revolutionized military operations research; and performed pioneering work in artificial intelligence for top secret government projects. He wrote the original software for targeting cities in a nuclear hot war; and he was one of the first scientists to recognize the danger of nuclear winter. As a Cold Warrior, he designed logical systems that modeled "rational" human and machine behaviors, and yet he was largely oblivious to the emotional damage his irrational personal behavior inflicted upon his family, lovers, and business partners. He died young, but left behind a fascinating record of his life, including correspondence with such philosophically inclined physicists as Niels Bohr, Norbert Wiener, and John Wheeler. These remarkable letters illuminate the long and often bitter struggle to explain the paradox of measurement at the heart of quantum physics. In recent years, Everett's solution to this mysterious problem-the existence of a universe of universes-has gained considerable traction in scientific circles, not as science fiction, but as an explanation of physical reality.

Turing's Vision: The Birth of Computer Science


Chris Bernhardt - 2016
    This groundbreaking and powerful theory now forms the basis of computer science. In Turing's Vision, Chris Bernhardt explains the theory, Turing's most important contribution, for the general reader. Bernhardt argues that the strength of Turing's theory is its simplicity, and that, explained in a straightforward manner, it is eminently understandable by the nonspecialist. As Marvin Minsky writes, -The sheer simplicity of the theory's foundation and extraordinary short path from this foundation to its logical and surprising conclusions give the theory a mathematical beauty that alone guarantees it a permanent place in computer theory.- Bernhardt begins with the foundation and systematically builds to the surprising conclusions. He also views Turing's theory in the context of mathematical history, other views of computation (including those of Alonzo Church), Turing's later work, and the birth of the modern computer.In the paper, -On Computable Numbers, with an Application to the Entscheidungsproblem, - Turing thinks carefully about how humans perform computation, breaking it down into a sequence of steps, and then constructs theoretical machines capable of performing each step. Turing wanted to show that there were problems that were beyond any computer's ability to solve; in particular, he wanted to find a decision problem that he could prove was undecidable. To explain Turing's ideas, Bernhardt examines three well-known decision problems to explore the concept of undecidability; investigates theoretical computing machines, including Turing machines; explains universal machines; and proves that certain problems are undecidable, including Turing's problem concerning computable numbers.

Thinking Statistically


Uri Bram - 2011
    Along the way we’ll learn how selection bias can explain why your boss doesn’t know he sucks (even when everyone else does); how to use Bayes’ Theorem to decide if your partner is cheating on you; and why Mark Zuckerberg should never be used as an example for anything. See the world in a whole new light, and make better decisions and judgements without ever going near a t-test. Think. Think Statistically.

Chance: A Guide to Gambling, Love, the Stock Market, and Just About Everything Else


Amir D. Aczel - 2003
    Aczel turns his sights on probability theory -- the branch of mathematics that measures the likelihood of a random event. He explains probability in clear, layman's terms, and shows its practical applications. What is commonly called luck has mathematical roots and in Chance, you'll learn to increase your odds of success in everything from true love to the stock market. For thousands of years, the twin forces of chance and mischance have beguiled humanity like none other. Why does fortune smile on some people, and smirk on others? What is luck, and why does it so often visit the undeserving? How can we predict the random events happening around us? Even better, how can we manipulate them? In this delightful and lucid voyage through the realm of the random, Dr. Aczel once again makes higher mathematics intelligible to us.