PHP 6 and MySQL 5 for Dynamic Web Sites: Visual Quickpro Guide


Larry Ullman - 2007
    With step-by-step instructions, complete scripts, and expert tips to guide readers, this work gets right down to business - after grounding readers with separate discussions of first the scripting language (PHP) and then the database program (MySQL), it goes on to cover security, sessions and cookies, and using additional Web tools.

Excel 2007 for Dummies


Greg Harvey - 2006
    Completely rewritten to reflect the major changes Microsoft has made to Office, this reference includes information on creating and editing worksheets, formatting cells, entering formulas, creating and editing charts, inserting graphs, designing database forms, adding database records, using seek-and-find options, adding hyperlinks to worksheets, and more.

Mathematics In The Modern World: Readings From Scientific American


Morris Kline - 1968
    

R in a Nutshell: A Desktop Quick Reference


Joseph Adler - 2009
    R in a Nutshell provides a quick and practical way to learn this increasingly popular open source language and environment. You'll not only learn how to program in R, but also how to find the right user-contributed R packages for statistical modeling, visualization, and bioinformatics.The author introduces you to the R environment, including the R graphical user interface and console, and takes you through the fundamentals of the object-oriented R language. Then, through a variety of practical examples from medicine, business, and sports, you'll learn how you can use this remarkable tool to solve your own data analysis problems.Understand the basics of the language, including the nature of R objectsLearn how to write R functions and build your own packagesWork with data through visualization, statistical analysis, and other methodsExplore the wealth of packages contributed by the R communityBecome familiar with the lattice graphics package for high-level data visualizationLearn about bioinformatics packages provided by Bioconductor"I am excited about this book. R in a Nutshell is a great introduction to R, as well as a comprehensive reference for using R in data analytics and visualization. Adler provides 'real world' examples, practical advice, and scripts, making it accessible to anyone working with data, not just professional statisticians."

Python Crash Course: A Hands-On, Project-Based Introduction to Programming


Eric Matthes - 2015
    You'll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you'll put your new knowledge into practice with three substantial projects: a Space Invaders-inspired arcade game, data visualizations with Python's super-handy libraries, and a simple web app you can deploy online.As you work through Python Crash Course, you'll learn how to: Use powerful Python libraries and tools, including matplotlib, NumPy, and PygalMake 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progressesWork with data to generate interactive visualizationsCreate and customize simple web apps and deploy them safely onlineDeal with mistakes and errors so you can solve your own programming problemsIf you've been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code!

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

The Short Story Romance Handbook: How I Make Over $1,000 a Month Writing Short Story Romance (and it only took me 3 months)


Hope Ford - 2018
    Since then I have had three best sellers in the short romance category and am now making over $1,000 a month. I went from making $10.64 for January (my first month) to making $1297.72 for March (my third month). I am projected, by looking at sales, to make $1800+ for April (my fourth month). This book is a tell-all of exactly what I did and how I did it. This is a short book. I guarantee there is no fluff here. I get straight to the point and tell you exactly what I did. I truly want to help you become a bestselling author and help you make money writing books. Please, I encourage you to follow the steps outlined in this book. Happy Writing! #1 bestselling short romance author Hope Ford writes short, steamy, sweet romances. There is always an alpha male (because who doesn’t love an alpha male) and a woman he makes his queen. Sit back, grab a glass of wine, and get lost in this happily ever after story – that’s also a little naughty.

The Elements of Programming Style


Brian W. Kernighan - 1974
    Elements of programming.

Lucene in Action


Erik Hatcher - 2004
    It describes how to index your data, including types you definitely need to know such as MS Word, PDF, HTML, and XML. It introduces you to searching, sorting, filtering, and highlighting search results.Lucene powers search in surprising placesWhat's Inside- How to integrate Lucene into your applications- Ready-to-use framework for rich document handling- Case studies including Nutch, TheServerSide, jGuru, etc.- Lucene ports to Perl, Python, C#/.Net, and C++- Sorting, filtering, term vectors, multiple, and remote index searching- The new SpanQuery family, extending query parser, hit collecting- Performance testing and tuning- Lucene add-ons (hit highlighting, synonym lookup, and others)

Structure and Interpretation of Computer Programs


Harold Abelson - 1984
    This long-awaited revision contains changes throughout the text. There are new implementations of most of the major programming systems in the book, including the interpreters and compilers, and the authors have incorporated many small changes that reflect their experience teaching the course at MIT since the first edition was published. A new theme has been introduced that emphasizes the central role played by different approaches to dealing with time in computational models: objects with state, concurrent programming, functional programming and lazy evaluation, and nondeterministic programming. There are new example sections on higher-order procedures in graphics and on applications of stream processing in numerical programming, and many new exercises. In addition, all the programs have been reworked to run in any Scheme implementation that adheres to the IEEE standard.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Stuff on a Stick


Instructables.com - 2011
    Learn how to make entire meals from starters to desserts, all served on sticks! All projects come from Instructables.com, are written by carnival food experts, and contain pictures for each step so you can easily do it yourself.It’s better on a stick!

High Performance JavaScript


Nicholas C. Zakas - 2010
    The problem is that all of those lines of JavaScript code can slow down your apps. This book reveals techniques and strategies to help you eliminate performance bottlenecks during development. You'll learn how to improve execution time, downloading, interaction with the DOM, page life cycle, and more. Yahoo! frontend engineer Nicholas C. Zakas and five other JavaScript experts -- Ross Harmes, Julien Lecomte, Steven Levithan, Stoyan Stefanov, and Matt Sweeney -- demonstrate optimal ways to load code onto a page, and offer programming tips to help your JavaScript run as efficiently and quickly as possible. You'll learn the best practices to build and deploy your files to a production environment, and tools that can help you find problems once your site goes live. Identify problem code and use faster alternatives to accomplish the same task Improve scripts by learning how JavaScript stores and accesses data Implement JavaScript code so that it doesn't slow down interaction with the DOM Use optimization techniques to improve runtime performance Learn ways to ensure the UI is responsive at all times Achieve faster client-server communication Use a build system to minify files, and HTTP compression to deliver them to the browser