Algorithms to Live By: The Computer Science of Human Decisions


Brian Christian - 2016
    What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

You Look Like a Thing and I Love You: How Artificial Intelligence Works and Why It's Making the World a Weirder Place


Janelle Shane - 2019
    according to an artificial intelligence trained by scientist Janelle Shane, creator of the popular blog "AI Weirdness." She creates silly AIs that learn how to name paint colors, create the best recipes, and even flirt (badly) with humans--all to understand the technology that governs so much of our daily lives.We rely on AI every day for recommendations, for translations, and to put cat ears on our selfie videos. We also trust AI with matters of life and death, on the road and in our hospitals. But how smart is AI really, and how does it solve problems, understand humans, and even drive self-driving cars?Shane delivers the answers to every AI question you've ever asked, and some you definitely haven't--like, how can a computer design the perfect sandwich? What does robot-generated Harry Potter fan-fiction look like? And is the world's best Halloween costume really "Vampire Hog Bride"?In this smart, often hilarious introduction to the most interesting science of our time, Shane shows how these programs learn, fail, and adapt--and how they reflect the best and worst of humanity. You Look Like a Thing and I Love You is the perfect book for anyone curious about what the robots in our lives are thinking.

AI Superpowers: China, Silicon Valley, and the New World Order


Kai-Fu Lee - 2018
    Kai-Fu Lee—one of the world’s most respected experts on AI and China—reveals that China has suddenly caught up to the US at an astonishingly rapid and unexpected pace.In AI Superpowers, Kai-Fu Lee argues powerfully that because of these unprecedented developments in AI, dramatic changes will be happening much sooner than many of us expected. Indeed, as the US-Sino AI competition begins to heat up, Lee urges the US and China to both accept and to embrace the great responsibilities that come with significant technological power.Most experts already say that AI will have a devastating impact on blue-collar jobs. But Lee predicts that Chinese and American AI will have a strong impact on white-collar jobs as well. Is universal basic income the solution? In Lee’s opinion, probably not.  But he provides a clear description of which jobs will be affected and how soon, which jobs can be enhanced with AI, and most importantly, how we can provide solutions to some of the most profound changes in human history that are coming soon.

Python Pocket Reference


Mark Lutz - 1998
    Hundreds of thousands of Python developers around the world rely on Python for general-purpose tasks, Internet scripting, systems programming, user interfaces, and product customization. Available on all major computing platforms, including commercial versions of Unix, Linux, Windows, and Mac OS X, Python is portable, powerful and remarkable easy to use.With its convenient, quick-reference format, "Python Pocket Reference," 3rd Edition is the perfect on-the-job reference. More importantly, it's now been refreshed to cover the language's latest release, Python 2.4. For experienced Python developers, this book is a compact toolbox that delivers need-to-know information at the flip of a page. This third edition also includes an easy-lookup index to help developers find answers fast!Python 2.4 is more than just optimization and library enhancements; it's also chock full of bug fixes and upgrades. And these changes are addressed in the "Python Pocket Reference," 3rd Edition. New language features, new and upgraded built-ins, and new and upgraded modules and packages--they're all clarified in detail.The "Python Pocket Reference," 3rd Edition serves as the perfect companion to "Learning Python" and "Programming Python."

Rise of the Robots: Technology and the Threat of a Jobless Future


Martin Ford - 2015
    In Rise of the Robots, Silicon Valley entrepreneur Martin Ford argues that this is absolutely not the case. As technology continues to accelerate and machines begin taking care of themselves, fewer people will be necessary. Artificial intelligence is already well on its way to making “good jobs” obsolete: many paralegals, journalists, office workers, and even computer programmers are poised to be replaced by robots and smart software. As progress continues, blue and white collar jobs alike will evaporate, squeezing working- and middle-class families ever further. At the same time, households are under assault from exploding costs, especially from the two major industries—education and health care—that, so far, have not been transformed by information technology. The result could well be massive unemployment and inequality as well as the implosion of the consumer economy itself.In Rise of the Robots, Ford details what machine intelligence and robotics can accomplish, and implores employers, scholars, and policy makers alike to face the implications. The past solutions to technological disruption, especially more training and education, aren't going to work, and we must decide, now, whether the future will see broad-based prosperity or catastrophic levels of inequality and economic insecurity. Rise of the Robots is essential reading for anyone who wants to understand what accelerating technology means for their own economic prospects—not to mention those of their children—as well as for society as a whole.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Disruptive Possibilities: How Big Data Changes Everything


Jeffrey Needham - 2013
    As author Jeffrey Needham points out in this eye-opening book, big data can provide unprecedented insight into user habits, giving enterprises a huge market advantage. It will also inspire organizations to change the way they function."Disruptive Possibilities: How Big Data Changes Everything" takes you on a journey of discovery into the emerging world of big data, from its relatively simple technology to the ways it differs from cloud computing. But the big story of big data is the disruption of enterprise status quo, especially vendor-driven technology silos and budget-driven departmental silos. In the highly collaborative environment needed to make big data work, silos simply don't fit.Internet-scale computing offers incredible opportunity and a tremendous challenge--and it will soon become standard operating procedure in the enterprise. This book shows you what to expect.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

The Art of Intrusion: The Real Stories Behind the Exploits of Hackers, Intruders and Deceivers


Kevin D. Mitnick - 2005
    In his bestselling The Art of Deception, Mitnick presented fictionalized case studies that illustrated how savvy computer crackers use "social engineering" to compromise even the most technically secure computer systems. Now, in his new book, Mitnick goes one step further, offering hair-raising stories of real-life computer break-ins-and showing how the victims could have prevented them. Mitnick's reputation within the hacker community gave him unique credibility with the perpetrators of these crimes, who freely shared their stories with him-and whose exploits Mitnick now reveals in detail for the first time, including:A group of friends who won nearly a million dollars in Las Vegas by reverse-engineering slot machines Two teenagers who were persuaded by terrorists to hack into the Lockheed Martin computer systems Two convicts who joined forces to become hackers inside a Texas prison A "Robin Hood" hacker who penetrated the computer systems of many prominent companies-andthen told them how he gained access With riveting "you are there" descriptions of real computer break-ins, indispensable tips on countermeasures security professionals need to implement now, and Mitnick's own acerbic commentary on the crimes he describes, this book is sure to reach a wide audience-and attract the attention of both law enforcement agencies and the media.

Tools and Weapons: The Promise and the Peril of the Digital Age


Brad Smith - 2019
    This might seem uncontroversial, but it flies in the face of a tech sector long obsessed with rapid growth and sometimes on disruption as an end in itself. Now, though, we have reached an inflection point: Silicon Valley has moved fast and it has broken things. A new understanding has emerged that companies that create technology must accept greater responsibility for the future. And governments will need to regulate technology by moving faster and catching up with the pace of innovation that is impacting our communities and changing the world.In Tools and Weapons, Brad Smith takes us into the cockpit of one of the world's largest and most powerful tech companies as it finds itself in the middle of some of the thorniest emerging issues of our time. These are challenges that come with no preexisting playbook, including privacy, cybercrime and cyberwar, social media, the moral conundrums of AI, big tech's relationship to inequality and the challenges for democracy, far and near. While in no way a self-glorifying "Microsoft memoir," the book opens up the curtain remarkably wide onto some of the company's most crucial recent decision points, as it strives to protect the hopes technology offers against the very real threats it also presents. Every tool can be a weapon in the wrong person's hands, and companies are being challenged in entirely new ways to embrace the totality of their responsibilities. We have moved from a world in which Silicon Valley could take no prisoners to one in which tech companies and governments must work together to address the challenges and adapt to the changes technology has unleashed. There are huge ramifications to be thought through, and Brad Smith provides a marvelous and urgently necessary contribution to that effort.

Dataclysm: Who We Are (When We Think No One's Looking)


Christian Rudder - 2014
    In Dataclysm, Christian Rudder uses it to show us who we truly are.   For centuries, we’ve relied on polling or small-scale lab experiments to study human behavior. Today, a new approach is possible. As we live more of our lives online, researchers can finally observe us directly, in vast numbers, and without filters. Data scientists have become the new demographers.   In this daring and original book, Rudder explains how Facebook "likes" can predict, with surprising accuracy, a person’s sexual orientation and even intelligence; how attractive women receive exponentially more interview requests; and why you must have haters to be hot. He charts the rise and fall of America’s most reviled word through Google Search and examines the new dynamics of collaborative rage on Twitter. He shows how people express themselves, both privately and publicly. What is the least Asian thing you can say? Do people bathe more in Vermont or New Jersey? What do black women think about Simon & Garfunkel? (Hint: they don’t think about Simon & Garfunkel.) Rudder also traces human migration over time, showing how groups of people move from certain small towns to the same big cities across the globe. And he grapples with the challenge of maintaining privacy in a world where these explorations are possible.   Visually arresting and full of wit and insight, Dataclysm is a new way of seeing ourselves—a brilliant alchemy, in which math is made human and numbers become the narrative of our time.

Python for Data Analysis


Wes McKinney - 2011
    It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples

Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die


Eric Siegel - 2013
    Rather than a "how to" for hands-on techies, the book entices lay-readers and experts alike by covering new case studies and the latest state-of-the-art techniques.You have been predicted — by companies, governments, law enforcement, hospitals, and universities. Their computers say, "I knew you were going to do that!" These institutions are seizing upon the power to predict whether you're going to click, buy, lie, or die.Why? For good reason: predicting human behavior combats financial risk, fortifies healthcare, conquers spam, toughens crime fighting, and boosts sales.How? Prediction is powered by the world's most potent, booming unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn.Predictive analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future — lifting a bit of the fog off our hazy view of tomorrow — means pay dirt.In this rich, entertaining primer, former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: -What type of mortgage risk Chase Bank predicted before the recession. -Predicting which people will drop out of school, cancel a subscription, or get divorced before they are even aware of it themselves. -Why early retirement decreases life expectancy and vegetarians miss fewer flights. -Five reasons why organizations predict death, including one health insurance company. -How U.S. Bank, European wireless carrier Telenor, and Obama's 2012 campaign calculated the way to most strongly influence each individual. -How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! -How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. -How judges and parole boards rely on crime-predicting computers to decide who stays in prison and who goes free. -What's predicted by the BBC, Citibank, ConEd, Facebook, Ford, Google, IBM, the IRS, Match.com, MTV, Netflix, Pandora, PayPal, Pfizer, and Wikipedia. A truly omnipresent science, predictive analytics affects everyone, every day. Although largely unseen, it drives millions of decisions, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate.Predictive analytics transcends human perception. This book's final chapter answers the riddle: What often happens to you that cannot be witnessed, and that you can't even be sure has happened afterward — but that can be predicted in advance?Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers


John MacCormick - 2012
    A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.