Concepts, Techniques, and Models of Computer Programming
Peter Van Roy - 2004
The book focuses on techniques of lasting value and explains them precisely in terms of a simple abstract machine. The book presents all major programming paradigms in a uniform framework that shows their deep relationships and how and where to use them together.After an introduction to programming concepts, the book presents both well-known and lesser-known computation models ("programming paradigms"). Each model has its own set of techniques and each is included on the basis of its usefulness in practice. The general models include declarative programming, declarative concurrency, message-passing concurrency, explicit state, object-oriented programming, shared-state concurrency, and relational programming. Specialized models include graphical user interface programming, distributed programming, and constraint programming. Each model is based on its kernel language—a simple core language that consists of a small number of programmer- significant elements. The kernel languages are introduced progressively, adding concepts one by one, thus showing the deep relationships between different models. The kernel languages are defined precisely in terms of a simple abstract machine. Because a wide variety of languages and programming paradigms can be modeled by a small set of closely related kernel languages, this approach allows programmer and student to grasp the underlying unity of programming. The book has many program fragments and exercises, all of which can be run on the Mozart Programming System, an Open Source software package that features an interactive incremental development environment.
Neural Networks: A Comprehensive Foundation
Simon Haykin - 1994
Introducing students to the many facets of neural networks, this text provides many case studies to illustrate their real-life, practical applications.
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
Core Java, Volume II--Advanced Features
Cay S. Horstmann - 1999
It contains sample programs to illustrate practical solutions to the type of real-world problems professional developers encounter.
Linear Algebra and Its Applications [with CD-ROM]
David C. Lay - 1993
Thinking in Java
Bruce Eckel - 1998
The author's take on the essence of Java as a new programming language and the thorough introduction to Java's features make this a worthwhile tutorial. Thinking in Java begins a little esoterically, with the author's reflections on why Java is new and better. (This book's choice of font for chapter headings is remarkably hard on the eyes.) The author outlines his thoughts on why Java will make you a better programmer, without all the complexity. The book is better when he presents actual language features. There's a tutorial to basic Java types, keywords, and operators. The guide includes extensive source code that is sometimes daunting (as with the author's sample code for all the Java operators in one listing.) As such, this text will be most useful for the experienced developer. The text then moves on to class design issues, when to use inheritance and composition, and related topics of information hiding and polymorphism. (The treatment of inner classes and scoping will likely seem a bit overdone for most readers.) The chapter on Java collection classes for both Java Developer's Kit (JDK) 1.1 and the new classes, such as sets, lists, and maps, are much better. There's material in this chapter that you are unlikely to find anywhere else. Chapters on exception handling and programming with type information are also worthwhile, as are the chapters on the new Swing interface classes and network programming. Although it adopts somewhat of a mixed-bag approach, Thinking in Java contains some excellent material for the object-oriented developer who wants to see what all the fuss is about with Java.
The Self-Taught Programmer: The Definitive Guide to Programming Professionally
Cory Althoff - 2017
After a year of self-study, I learned to program well enough to land a job as a software engineer II at eBay. Once I got there, I realized I was severely under-prepared. I was overwhelmed by the amount of things I needed to know but hadn't learned yet. My journey learning to program, and my experience at my first job as a software engineer were the inspiration for this book. This book is not just about learning to program; although you will learn to code. If you want to program professionally, it is not enough to learn to code; that is why, in addition to helping you learn to program, I also cover the rest of the things you need to know to program professionally that classes and books don't teach you. "The Self-taught Programmer" is a roadmap, a guide to take you from writing your first Python program, to passing your first technical interview. I divided the book into five sections: 1. Start to program in Python 3 and build your first program.2. Learn Object-oriented programming and create a powerful Python program to get you hooked.3. Learn to use tools like Git, Bash, and regular expressions. Then use your new coding skills to build a web scraper.4. Study Computer Science fundamentals like data structures and algorithms.5. Finish with best coding practices, tips for working with a team, and advice on landing a programming job.You CAN learn to program professionally. The path is there. Will you take it?
Operating Systems: Three Easy Pieces
Remzi H. Arpaci-Dusseau - 2012
Topics are broken down into three major conceptual pieces: Virtualization, Concurrency, and Persistence. Includes all major components of modern systems including scheduling, virtual memory management, disk subsystems and I/O, file systems, and even a short introduction to distributed systems.
The C Programming Language
Brian W. Kernighan - 1978
It is the definitive reference guide, now in a second edition. Although the first edition was written in 1978, it continues to be a worldwide best-seller. This second edition brings the classic original up to date to include the ANSI standard. From the Preface: We have tried to retain the brevity of the first edition. C is not a big language, and it is not well served by a big book. We have improved the exposition of critical features, such as pointers, that are central to C programming. We have refined the original examples, and have added new examples in several chapters. For instance, the treatment of complicated declarations is augmented by programs that convert declarations into words and vice versa. As before, all examples have been tested directly from the text, which is in machine-readable form. As we said in the first preface to the first edition, C "wears well as one's experience with it grows." With a decade more experience, we still feel that way. We hope that this book will help you to learn C and use it well.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Artificial Intelligence: A Modern Approach
Stuart Russell - 1994
The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa
Decision Trees and Random Forests: A Visual Introduction For Beginners: A Simple Guide to Machine Learning with Decision Trees
Chris Smith - 2017
They are also used in countless industries such as medicine, manufacturing and finance to help companies make better decisions and reduce risk. Whether coded or scratched out by hand, both algorithms are powerful tools that can make a significant impact. This book is a visual introduction for beginners that unpacks the fundamentals of decision trees and random forests. If you want to dig into the basics with a visual twist plus create your own machine learning algorithms in Python, this book is for you.
A Textbook of English phonetics for Indian students
T. Balasubramanian - 1981
Sufficient information about General Phonetics has been included in the book, with a view to facilitating the reader's understanding of the Phonetics of English. Plenty of examples are given from English, Tamil, Hindi and Urdu/Arabic to illustrate the points made. There are a number of diagrams throughout the book,illustrating the articulation of the sounds of English. The book also includes some information about General Phonology and the Phonology of English. A few sentences, dialogues and a popular tale have been given at the end of the book, both in orthography and in simple phonemic transcription. The book covers the Phonetics/Phonology syllabus of most Indian universities and ELT institutes
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Dive Into Python
Mark Pilgrim - 2004
because the language seems like a good way to accomplish programming tasks that don't require the low-level bit handling power of C.-- Richard Bejtlich, TaoSecurityPython is a new and innovative scripting language. It is set to replace Perl as the programming language of choice for shell scripters, and for serious application developers who want a feature-rich, yet simple language to deploy their products.Dive Into Python is a hands-on guide to the Python language. Each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end.This is the perfect resource for you if you like to jump into languages fast and get going right away. If you're just starting to learn Python, first pick up a copy of Magnus Lie Hetland's Practical Python.