Book picks similar to
Multiple View Geometry in Computer Vision by Richard Hartley
computer-vision
computer-science
engineering
computer
C++ Primer
Stanley B. Lippman - 1989
This Fourth Edition not only keeps this tradition alive, it actually improves on it."--Steve Vinoski, Chief Engineer, Product Innovation, IONA Technologies" The Primer really brings this large and complex language down to size."--Justin Shaw, Senior Member of Technical Staff, Electronic Programs Division, The Aerospace Corporation"It not only gets novices up and running early, but gets them to do so using good programming practices."--Nevin ": -)" Liber, Senior Principal Engineer (C++ developer since 1988)This popular tutorial introduction to standard C++ has been completely updated, reorganized, and rewritten to help programmers learn the language faster and use it in a more modern, effective way.Just as C++ has evolved since the last edition, so has the authors' approach to teaching it. They now introduce the C++ standard library from the beginning, giving readers the means to write useful programs without first having to master every language detail. Highlighting today's best practices, they show how to write programs that are safe, can be built quickly, and yet offer outstanding performance. Examples that take advantage of the library, and explain the features of C++, also show how to make the best use of the language. As in its previous editions, the book's authoritative discussion of fundamental C++ concepts and techniques makes it a valuable resource even for more experienced programmers.Program Faster and More Effectively with This Rewritten ClassicRestructured for quicker learning, using the C++ standard libraryUpdated to teach the most current programming styles and program design techniquesFilled with new learning aids that emphasize important points, warn about common pitfalls, suggest good programming practices, and provide general usage tipsComplete with exercises that reinforce skills learnedAuthoritative and comprehensive in its coverage The source code for the book's extended examples is available on the Web at the address below.www.awprofessional.com/cpp_primer
Prediction Machines: The Simple Economics of Artificial Intelligence
Ajay Agrawal - 2018
But facing the sea change that AI will bring can be paralyzing. How should companies set strategies, governments design policies, and people plan their lives for a world so different from what we know? In the face of such uncertainty, many analysts either cower in fear or predict an impossibly sunny future.But in Prediction Machines, three eminent economists recast the rise of AI as a drop in the cost of prediction. With this single, masterful stroke, they lift the curtain on the AI-is-magic hype and show how basic tools from economics provide clarity about the AI revolution and a basis for action by CEOs, managers, policy makers, investors, and entrepreneurs.When AI is framed as cheap prediction, its extraordinary potential becomes clear:
Prediction is at the heart of making decisions under uncertainty. Our businesses and personal lives are riddled with such decisions.
Prediction tools increase productivity--operating machines, handling documents, communicating with customers.
Uncertainty constrains strategy. Better prediction creates opportunities for new business structures and strategies to compete.
Penetrating, fun, and always insightful and practical, Prediction Machines follows its inescapable logic to explain how to navigate the changes on the horizon. The impact of AI will be profound, but the economic framework for understanding it is surprisingly simple.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
Mindstorms: Children, Computers, And Powerful Ideas
Seymour Papert - 1980
We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers.
Mastering Algorithms with C
Kyle Loudon - 1999
Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms
Machine Learning in Action
Peter Harrington - 2011
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
Statistical Inference
George Casella - 2001
Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.
You Look Like a Thing and I Love You: How Artificial Intelligence Works and Why It's Making the World a Weirder Place
Janelle Shane - 2019
according to an artificial intelligence trained by scientist Janelle Shane, creator of the popular blog "AI Weirdness." She creates silly AIs that learn how to name paint colors, create the best recipes, and even flirt (badly) with humans--all to understand the technology that governs so much of our daily lives.We rely on AI every day for recommendations, for translations, and to put cat ears on our selfie videos. We also trust AI with matters of life and death, on the road and in our hospitals. But how smart is AI really, and how does it solve problems, understand humans, and even drive self-driving cars?Shane delivers the answers to every AI question you've ever asked, and some you definitely haven't--like, how can a computer design the perfect sandwich? What does robot-generated Harry Potter fan-fiction look like? And is the world's best Halloween costume really "Vampire Hog Bride"?In this smart, often hilarious introduction to the most interesting science of our time, Shane shows how these programs learn, fail, and adapt--and how they reflect the best and worst of humanity. You Look Like a Thing and I Love You is the perfect book for anyone curious about what the robots in our lives are thinking.
Practical Object Oriented Design in Ruby
Sandi Metz - 2012
The Web is awash in Ruby code that is now virtually impossible to change or extend. This text helps you solve that problem by using powerful real-world object-oriented design techniques, which it thoroughly explains using simple and practical Ruby examples. Sandi Metz has distilled a lifetime of conversations and presentations about object-oriented design into a set of Ruby-focused practices for crafting manageable, extensible, and pleasing code. She shows you how to build new applications that can survive success and repair existing applications that have become impossible to change. Each technique is illustrated with extended examples, all downloadable from the companion Web site, poodr.info. The first title to focus squarely on object-oriented Ruby application design,
Practical Object-Oriented Design in Ruby
will guide you to superior outcomes, whatever your previous Ruby experience. Novice Ruby programmers will find specific rules to live by; intermediate Ruby programmers will find valuable principles they can flexibly interpret and apply; and advanced Ruby programmers will find a common language they can use to lead development and guide their colleagues. This guide will help you Understand how object-oriented programming can help you craft Ruby code that is easier to maintain and upgrade Decide what belongs in a single Ruby class Avoid entangling objects that should be kept separate Define flexible interfaces among objects Reduce programming overhead costs with duck typing Successfully apply inheritance Build objects via composition Design cost-effective tests Solve common problems associated with poorly designed Ruby code
Bayes Theorem: A Visual Introduction For Beginners
Dan Morris - 2016
Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.
Elements of the Theory of Computation
Harry R. Lewis - 1981
The authors are well-known for their clear presentation that makes the material accessible to a a broad audience and requires no special previous mathematical experience. KEY TOPICS: In this new edition, the authors incorporate a somewhat more informal, friendly writing style to present both classical and contemporary theories of computation. Algorithms, complexity analysis, and algorithmic ideas are introduced informally in Chapter 1, and are pursued throughout the book. Each section is followed by problems.
The Art of Invisibility: The World's Most Famous Hacker Teaches You How to Be Safe in the Age of Big Brother and Big Data
Kevin D. Mitnick - 2017
Consumer's identities are being stolen, and a person's every step is being tracked and stored. What once might have been dismissed as paranoia is now a hard truth, and privacy is a luxury few can afford or understand.In this explosive yet practical book, Kevin Mitnick illustrates what is happening without your knowledge--and he teaches you "the art of invisibility." Mitnick is the world's most famous--and formerly the Most Wanted--computer hacker. He has hacked into some of the country's most powerful and seemingly impenetrable agencies and companies, and at one point he was on a three-year run from the FBI. Now, though, Mitnick is reformed and is widely regarded as the expert on the subject of computer security. He knows exactly how vulnerabilities can be exploited and just what to do to prevent that from happening. In THE ART OF INVISIBILITY Mitnick provides both online and real life tactics and inexpensive methods to protect you and your family, in easy step-by-step instructions. He even talks about more advanced "elite" techniques, which, if used properly, can maximize your privacy. Invisibility isn't just for superheroes--privacy is a power you deserve and need in this modern age.
Practical Vim: Edit Text at the Speed of Thought
Drew Neil - 2012
It's available on almost every OS--if you master the techniques in this book, you'll never need another text editor. Practical Vim shows you 120 vim recipes so you can quickly learn the editor's core functionality and tackle your trickiest editing and writing tasks. Vim, like its classic ancestor vi, is a serious tool for programmers, web developers, and sysadmins. No other text editor comes close to Vim for speed and efficiency; it runs on almost every system imaginable and supports most coding and markup languages. Learn how to edit text the "Vim way:" complete a series of repetitive changes with The Dot Formula, using one keystroke to strike the target, followed by one keystroke to execute the change. Automate complex tasks by recording your keystrokes as a macro. Run the same command on a selection of lines, or a set of files. Discover the "very magic" switch, which makes Vim's regular expression syntax more like Perl's. Build complex patterns by iterating on your search history. Search inside multiple files, then run Vim's substitute command on the result set for a project-wide search and replace. All without installing a single plugin! You'll learn how to navigate text documents as fast as the eye moves--with only a few keystrokes. Jump from a method call to its definition with a single command. Use Vim's jumplist, so that you can always follow the breadcrumb trail back to the file you were working on before. Discover a multilingual spell-checker that does what it's told.Practical Vim will show you new ways to work with Vim more efficiently, whether you're a beginner or an intermediate Vim user. All this, without having to touch the mouse.What You Need: Vim version 7
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.