Book picks similar to
Fundamentals of Heat and Mass Transfer by Frank P. Incropera
engineering
textbooks
mechanical-engineering
textbook
Topology
James R. Munkres - 1975
Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
Engineering Electromagnetics
William H. Hayt Jr. - 1950
This edition retains the scope and emphasis that have made the book very successful while adding over twenty new numerical examples and over 550 new end-of-chapter problems.
Biology
Neil A. Campbell - 1987
This text has invited more than 4 million students into the study of this dynamic and essential discipline.The authors have restructured each chapter around a conceptual framework of five or six big ideas. An Overview draws students in and sets the stage for the rest of the chapter, each numbered Concept Head announces the beginning of a new concept, and Concept Check questions at the end of each chapter encourage students to assess their mastery of a given concept. New Inquiry Figures focus students on the experimental process, and new Research Method Figures illustrate important techniques in biology. Each chapter ends with a Scientific Inquiry Question that asks students to apply scientific investigation skills to the content of the chapter.
Fundamentals of Logic Design
Charles H. Roth Jr. - 1975
Author Charles H. Roth, Jr. carefully presents the theory that is necessary for understanding the fundamental concepts of logic design while not overwhelming students with the mathematics of switching theory. Divided into 20 easy-to-grasp study units, the book covers such fundamental concepts as Boolean algebra, logic gates design, flip-flops, and state machines. By combining flip-flops with networks of logic gates, students will learn to design counters, adders, sequence detectors, and simple digital systems. After covering the basics, this text presents modern design techniques using programmable logic devices and the VHDL hardware description language.
Div, Grad, Curl, and All That: An Informal Text on Vector Calculus
Harry M. Schey - 1973
Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Electronic Principles
Albert Paul Malvino - 1979
It's been updated to keep coverage in step with the fast-changing world of electronics. Yet, it retains Malvino's clear writing style, supported throughout by abundant illustrations and examples.
Calculus and Analytic Geometry
George B. Thomas Jr. - 1920
It features a visual presentation, designed to encourage learning; revised exercises to ensure clarity, balance and relevance; and clear commentary on the difficult subject of critical multivariable calculus topics.
Introduction to Mineralogy
William D. Nesse - 1999
It presents the important traditional content of mineralogy including crystallography, chemical bonding, controls on mineral structure, mineral stability, and crystal growth to provide a foundation that enables students to understand the nature and occurrence of minerals. Physical, optical, and X-ray powder diffraction techniques of mineral study are described in detail, and common chemical analytical methods are outlined as well. Detailed descriptions of over 100 common minerals are provided, and the geologic context within which these minerals occur is emphasized. Appendices provide tables and diagrams to help students with mineral identification, using both physical and optical properties. Numerous line drawings, photographs, and photomicrographs help make complex concepts understandable. Introduction to Mineralogy not only provides specific knowledge about minerals but also helps students develop the intellectual tools essential for a solid, scientific education. This comprehensive text is useful for undergraduate students in a wide range of mineralogy courses.
Physics and Technology for Future Presidents: An Introduction to the Essential Physics Every World Leader Needs to Know
Richard A. Muller - 2006
From the physics of energy to climate change, and from spy technology to quantum computers, this is the only textbook to focus on the modern physics affecting the decisions of political leaders and CEOs and, consequently, the lives of every citizen. How practical are alternative energy sources? Can satellites really read license plates from space? What is the quantum physics behind iPods and supermarket scanners? And how much should we fear a terrorist nuke? This lively book empowers students possessing any level of scientific background with the tools they need to make informed decisions and to argue their views persuasively with anyone--expert or otherwise.Based on Richard Muller's renowned course at Berkeley, the book explores critical physics topics: energy and power, atoms and heat, gravity and space, nuclei and radioactivity, chain reactions and atomic bombs, electricity and magnetism, waves, light, invisible light, climate change, quantum physics, and relativity. Muller engages readers through many intriguing examples, helpful facts to remember, a fun-to-read text, and an emphasis on real-world problems rather than mathematical computation. He includes chapter summaries, essay and discussion questions, Internet research topics, and handy tips for instructors to make the classroom experience more rewarding.Accessible and entertaining, "Physics and Technology for Future Presidents" gives students the scientific fluency they need to become well-rounded leaders in a world driven by science and technology.Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http: //press.princeton.edu/class_use/solutio...
Sociology
Anthony Giddens - 1982
The fifth edition preserves the lucid, lively and comprehensive qualities which marked the book in its earlier versions. Numerous student learning aids are provided.
Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching
Robert Sedgewick - 1997
Many new algorithms are presented, and the explanations of each algorithm are much more detailed than in previous editions. A new text design and detailed, innovative figures, with accompanying commentary, greatly enhance the presentation. The third edition retains the successful blend of theory and practice that has made Sedgewick's work an invaluable resource for more than 250,000 programmers! Whether you are a student learning the algorithms for the first time or a professional interested in having up-to-date reference material, you will find a wealth of useful information in this book.
Introduction to Graph Theory
Douglas B. West - 1995
Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.
Structure and Interpretation of Computer Programs
Harold Abelson - 1984
This long-awaited revision contains changes throughout the text. There are new implementations of most of the major programming systems in the book, including the interpreters and compilers, and the authors have incorporated many small changes that reflect their experience teaching the course at MIT since the first edition was published. A new theme has been introduced that emphasizes the central role played by different approaches to dealing with time in computational models: objects with state, concurrent programming, functional programming and lazy evaluation, and nondeterministic programming. There are new example sections on higher-order procedures in graphics and on applications of stream processing in numerical programming, and many new exercises. In addition, all the programs have been reworked to run in any Scheme implementation that adheres to the IEEE standard.