Book picks similar to
Analysis of Integrated and Co-Integrated Time Series with R: Use R! by Bernhard Pfaff
computer-science
epidemiology-flu
quant
r_project
Life After Google: The Fall of Big Data and the Rise of the Blockchain Economy
George Gilder - 2018
Gilder says or writes is ever delivered at anything less than the fullest philosophical decibel... Mr. Gilder sounds less like a tech guru than a poet, and his words tumble out in a romantic cascade." “Google’s algorithms assume the world’s future is nothing more than the next moment in a random process. George Gilder shows how deep this assumption goes, what motivates people to make it, and why it’s wrong: the future depends on human action.” — Peter Thiel, founder of PayPal and Palantir Technologies and author of Zero to One: Notes on Startups, or How to Build the Future The Age of Google, built on big data and machine intelligence, has been an awesome era. But it’s coming to an end. In Life after Google, George Gilder—the peerless visionary of technology and culture—explains why Silicon Valley is suffering a nervous breakdown and what to expect as the post-Google age dawns. Google’s astonishing ability to “search and sort” attracts the entire world to its search engine and countless other goodies—videos, maps, email, calendars….And everything it offers is free, or so it seems. Instead of paying directly, users submit to advertising. The system of “aggregate and advertise” works—for a while—if you control an empire of data centers, but a market without prices strangles entrepreneurship and turns the Internet into a wasteland of ads. The crisis is not just economic. Even as advances in artificial intelligence induce delusions of omnipotence and transcendence, Silicon Valley has pretty much given up on security. The Internet firewalls supposedly protecting all those passwords and personal information have proved hopelessly permeable. The crisis cannot be solved within the current computer and network architecture. The future lies with the “cryptocosm”—the new architecture of the blockchain and its derivatives. Enabling cryptocurrencies such as bitcoin and ether, NEO and Hashgraph, it will provide the Internet a secure global payments system, ending the aggregate-and-advertise Age of Google. Silicon Valley, long dominated by a few giants, faces a “great unbundling,” which will disperse computer power and commerce and transform the economy and the Internet. Life after Google is almost here. For fans of "Wealth and Poverty," "Knowledge and Power," and "The Scandal of Money."
Unity 3.X Game Development Essentials
Will Goldstone - 2009
With no prior knowledge of game development or 3D required, you will learn from scratch, taking each concept at a time working up to a full 3D mini-game. You'll learn scripting with C# or JavaScript and master the Unity development environment with easy-to-follow stepwise tasks. If you're a designer or animator who wishes to take their first steps into game development or prototyping, or if you've simply spent many hours sitting in front of video games, with ideas bubbling away in the back of your mind, Unity and this book should be your starting point. No prior knowledge of game production is required, inviting you to simply bring with you a passion for making great games.
Introduction to Computer Theory
Daniel I.A. Cohen - 1986
Covers all the topics needed by computer scientists with a sometimes humorous approach that reviewers found refreshing. The goal of the book is to provide a firm understanding of the principles and the big picture of where computer theory fits into the field.
Rebooting AI: Building Artificial Intelligence We Can Trust
Gary F. Marcus - 2019
Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer winning in games like Jeopardy and go does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules. These approaches are too narrow to achieve genuine intelligence. The world we live in is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Marcus and Davis show us what we need to first accomplish before we get there and argue that if we are wise along the way, we won't need to worry about a future of machine overlords. If we heed their advice, humanity can create an AI that we can trust in our homes, our cars, and our doctor's offices. Reboot provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of what we can achieve and how AI can make our lives better.
Data-ism: The Revolution Transforming Decision Making, Consumer Behavior, and Almost Everything Else
Steve Lohr - 2015
Today, Data is the vital raw material of the information economy. The explosive abundance of this digital asset, more than doubling every two years, is creating a new world of opportunity and challenge.Data-ism is about this next phase, in which vast, Internet-scale data sets are used for discovery and prediction in virtually every field. It is a journey across this emerging world with people, illuminating narrative examples, and insights. It shows that, if exploited, this new revolution will change the way decisions are made—relying more on data and analysis, and less on intuition and experience—and transform the nature of leadership and management.Lohr explains how individuals and institutions will need to exploit, protect, and manage their data to stay competitive in the coming years. Filled with rich examples and anecdotes of the various ways in which the rise of Big Data is affecting everyday life it raises provocative questions about policy and practice that have wide implications for all of our lives.
Cryptography and Network Security
Behrouz A. Forouzan - 2007
In this new first edition, well-known author Behrouz Forouzan uses his accessible writing style and visual approach to simplify the difficult concepts of cryptography and network security. This edition also provides a website that includes Powerpoint files as well as instructor and students solutions manuals. Forouzan presents difficult security topics from the ground up. A gentle introduction to the fundamentals of number theory is provided in the opening chapters, paving the way for the student to move on to more complex security and cryptography topics. Difficult math concepts are organized in appendices at the end of each chapter so that students can first learn the principles, then apply the technical background. Hundreds of examples, as well as fully coded programs, round out a practical, hands-on approach which encourages students to test the material they are learning.
Amazon Elastic Compute Cloud (EC2) User Guide
Amazon Web Services - 2012
This is official Amazon Web Services (AWS) documentation for Amazon Compute Cloud (Amazon EC2).This guide explains the infrastructure provided by the Amazon EC2 web service, and steps you through how to configure and manage your virtual servers using the AWS Management Console (an easy-to-use graphical interface), the Amazon EC2 API, or web tools and utilities.Amazon EC2 provides resizable computing capacity—literally, server instances in Amazon's data centers—that you use to build and host your software systems.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, Lego, and Rubber Ducks
Will Kurt - 2019
But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that.This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples.By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to:- How to measure your own level of uncertainty in a conclusion or belief- Calculate Bayes theorem and understand what it's useful for- Find the posterior, likelihood, and prior to check the accuracy of your conclusions- Calculate distributions to see the range of your data- Compare hypotheses and draw reliable conclusions from themNext time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Data Science For Dummies
Lillian Pierson - 2014
Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Practical SQL: A Beginner's Guide to Storytelling with Data
Anthony DeBarros - 2018
The book focuses on using SQL to find the story your data tells, with the popular open-source database PostgreSQL and the pgAdmin interface as its primary tools.You'll first cover the fundamentals of databases and the SQL language, then build skills by analyzing data from the U.S. Census and other federal and state government agencies. With exercises and real-world examples in each chapter, this book will teach even those who have never programmed before all the tools necessary to build powerful databases and access information quickly and efficiently.You'll learn how to: •Create databases and related tables using your own data •Define the right data types for your information •Aggregate, sort, and filter data to find patterns •Use basic math and advanced statistical functions •Identify errors in data and clean them up •Import and export data using delimited text files •Write queries for geographic information systems (GIS) •Create advanced queries and automate tasks Learning SQL doesn't have to be dry and complicated. Practical SQL delivers clear examples with an easy-to-follow approach to teach you the tools you need to build and manage your own databases. This book uses PostgreSQL, but the SQL syntax is applicable to many database applications, including Microsoft SQL Server and MySQL.
Introduction to C Programming
Reema Thareja - 2013
The aim of the book is to enable students to write effective C programs.The book starts with an introduction to programming in general followed by a detailed introduction to C programming. It then delves into a complete analysis of various constructs of C such as decision control and looping statements, functions, arrays, strings, pointers, structure and union, file management, and preprocessor directives. It also provides a separate chapter on linked list detailing the various kinds of linked lists and how they are used to allocate memory dynamically.A highly detailed pedagogical approach is followed throughout the book, which includes plenty of examples, figures, programming tips, keywords, and end-chapter exercises which make this book an ideal resource for students to master and fine-tune the art of writing C programs.
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Mining of Massive Datasets
Anand Rajaraman - 2011
This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.