Book picks similar to
Statistics with Mathematica by Martha L. Abell


mathematica
mathematics
statistical-analysis
statistics-maths

Algorithms in a Nutshell


George T. Heineman - 2008
    Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

The Difference Engine : Charles Babbage And The Quest To Build The First Computer


Doron Swade - 2000
    Doron Swade, technology historian and assistant director of London's Science Museum, investigates the troubles that plagued 19th-century knowledge engineers in The Difference Engine: Charles Babbage and the Quest to Build the First Computer.The author is in a unique position to appreciate the technical difficulties of the time, as he led a team that built a working model of a Difference Engine, using contemporary materials, in time for Babbage's 1991 bicentenary. The meat of the book is comprised of the story of the first computing machine design as gathered from the technical notes and drawings curated by Swade. Though Babbage certainly had problems translating his ideas into brass, the reader also comes to understand his fruitless, drawn-out arguments with his funders. Swade had it comparatively easy, though his depictions of the frustrating search for money and then working out how best to build the enormous machine in the late 1980s are delightful.It is difficult--maybe impossible--to draw a clear, unbroken line of influence from Babbage to any modern computer researchers, but his importance both as the first pioneer and as a symbol of the joys and sorrows of computing is unquestioned. Swade clearly respects his subject deeply, all the more so for having tried to bring the great old man's ideas to life. The Difference Engine is lovingly comprehensive and will thrill readers looking for a more technical examination of Babbage's career. --Rob Lightner

Coding the Matrix: Linear Algebra through Computer Science Applications


Philip N. Klein - 2013
    Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program"

A New Kind of Science


Stephen Wolfram - 1997
    Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton

The Human Face of Big Data


Rick Smolan - 2012
    Its enable us to sense, measure, and understand aspects of our existence in ways never before possible. The Human Face of Big Data captures, in glorious photographs and moving essays, an extraordinary revolution sweeping, almost invisibly, through business, academia, government, healthcare, and everyday life. It's already enabling us to provide a healthier life for our children. To provide our seniors with independence while keeping them safe. To help us conserve precious resources like water and energy. To alert us to tiny changes in our health, weeks or years before we develop a life-threatening illness. To peer into our own individual genetic makeup. To create new forms of life.  And soon, as many predict, to re-engineer our own species. And we've barely scratched the surface . . . Over the past decade, Rick Smolan and Jennifer Erwitt, co-founders of Against All Odds Productions, have produced a series of ambitious global projects in collaboration with hundreds of the world's leading photographers, writers, and graphic designers. Their Day in the Life projects were credited for creating a mass market for large-format illustrated books (rare was the coffee table book without one).  Today their projects aim at sparking global conversations about emerging topics ranging from the Internet (24 Hours in Cyberspace), to Microprocessors (One Digital Day), to how the human race is learning to heal itself, (The Power to Heal) to the global water crisis (Blue Planet Run). This year Smolan and Erwitt dispatched photographers and writers in every corner of the globe to explore the world of “Big Data” and to determine if it truly does, as many in the field claim, represent a brand new toolset for humanity, helping address the biggest challenges facing our species. The book features 10 essays by noted writers:Introduction: OCEANS OF DATA by Dan GardnerChapter 1: REFLECTIONS IN A DIGITAL MIRROR by Juan Enriquez, CEO, BiotechnomomyChapter 2: OUR DATA OURSELVES by Kate Green, the EconomistChapter 3: QUANTIFYING MYSELF by AJ Jacobs, EsquireChapter 4: DARK DATA by Marc Goodman, Future Crime InstituteChapter 5:  THE SENTIENT SENSOR MESH by Susan Karlin, Fast CompanyChapter 6: TAKING THE PULSE OF THE PLANET by Esther Dyson, EDventureChapter 7: CITIZEN SCIENCE by Gareth Cook, the Boston GlobeChapter 8: A DEMOGRAPH OF ONE by Michael Malone, Forbes magazineChapter 9: THE ART OF DATA by Aaron Koblin, Google Artist in ResidenceChapter 10: DATA DRIVEN by Jonathan Harris, Cowbird The book will also feature stunning info graphics from NIGEL HOLMES.1) GOOGLING GOOGLE: all the ways Google uses Data to help humanity2) DATA IS THE NEW OIL3) THE WORLD ACCORDING TO TWITTER4) AUCTIONING EYEBALLS: The world of Internet advertising5) FACEBOOK: A Billion Friends

Backtrack 5 Wireless Penetration Testing Beginner's Guide


Vivek Ramachandran - 2011
    Every new attack is described in the form of a lab exercise with rich illustrations of all the steps associated. You will practically implement various attacks as you go along. If you are an IT security professional or a security consultant who wants to get started with wireless testing with Backtrack, or just plain inquisitive about wireless security and hacking, then this book is for you. The book assumes that you have familiarity with Backtrack and basic wireless concepts.

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma


Alan Turing - 2004
    In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.

Machine Learning for Dummies


John Paul Mueller - 2016
    Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks.Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data--or anything in between--this guide makes it easier to understand and implement machine learning seamlessly.Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!

New SYLLABUS Mathematics 3; 6th Edition


Teh Keng Seng
    

Analysis Patterns: Reusable Object Models


Martin Fowler - 1996
    In Analysis Patterns: Reusable Object Models, Martin Fowler focuses on the end result of object-oriented analysis and design - the models themselves. He shares with you his wealth of object modeling experience and his keen eye for identifying repeating problems and transforming them into reusable models. Analysis Patterns provides a catalogue of patterns that have emerged in a wide range of domains including trading, measurement, accounting and organizational relationships. Recognizing that conceptual patterns cannot exist in isolation, the author also presents a series of support patterns that discuss how to turn conceptual models into software that in turn fits into an architecture for a large information system. Included in each pattern is the reasoning behind their design, rules for when they should and should not be used, and tips for implementation. The examples presented in this book comprise a cookbook of useful models and insight into the skill of reuse that will improve analysis, modeling and implementation.

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

Language, Proof and Logic: Text and CD


Jon Barwise - 1999
    The unique on-line grading services instantly grades solutions to hundred of computer exercises. It is specially devised to be used by philosophy instructors in a way that is useful to undergraduates of philosophy, computer science, mathematics, and linguistics.The book is a completely rewritten and much improved version of The Language of First-order Logic. Introductory material is presented in a more systematic and accessible fashion. Advanced chapters include proofs of soundness and completeness for propositional and predicate logic, as well as an accessible sketch of Godel's first incompleteness theorem. The book is appropriate for a wide range of courses, from first logic courses for undergraduates (philosophy, mathematics, and computer science) to a first graduate logic course.The package includes four pieces of software:Tarski's World 5.0, a new version of the popular program that teaches the basic first-order language and its semantics; Fitch, a natural deduction proof environment for giving and checking first-order proofs;Boole, a program that facilitates the construction and checking of truth tables and related notions (tautology, tautological consequence, etc.);Submit, a program that allows students to submit exercises done with the above programs to the Grade Grinder, the automatic grading service.Grade reports are returned to the student and, if requested, to the student's instructor, eliminating the need for tedious checking of homework. All programs are available for Windows, Macintosh and Linux systems.Instructors do not need to use the programs themselves in order to be able to take advantage of their pedagogical value. More about the software can be found at lpl.stanford.edu.The price of a new text/software package includes one Registration ID, which must be used each time work is submitted to the grading service. Once activated, the Registration ID is not transferable.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Convex Optimization


Stephen Boyd - 2004
    A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.