Introduction to Linear Algebra


Gilbert Strang - 1993
    Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

How to Lie with Statistics


Darrell Huff - 1954
    Darrell Huff runs the gamut of every popularly used type of statistic, probes such things as the sample study, the tabulation method, the interview technique, or the way the results are derived from the figures, and points up the countless number of dodges which are used to fool rather than to inform.

Death by Black Hole: And Other Cosmic Quandaries


Neil deGrasse Tyson - 2006
    "One of today's best popularizers of science." —Kirkus Reviews.Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with stunning clarity and almost childlike enthusiasm. Here, Tyson compiles his favorite essays across a myriad of cosmic topics. The title essay introduces readers to the physics of black holes by explaining the gory details of what would happen to your body if you fell into one. "Holy Wars" examines the needless friction between science and religion in the context of historical conflicts. "The Search for Life in the Universe" explores astral life from the frontiers of astrobiology. And "Hollywood Nights" assails the movie industry's feeble efforts to get its night skies right. Known for his ability to blend content, accessibility, and humor, Tyson is a natural teacher who simplifies some of the most complex concepts in astrophysics while simultaneously sharing his infectious excitement about our universe.

The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems, and Personalities


William Dunham - 1994
    . .he believes these ideas to be accessible to the audience he wantsto reach, and he writes so that they are. -- NatureIf you want to encourage anyone's interest in math, get them TheMathematical Universe. * New Scientist

Bayes Theorem: A Visual Introduction For Beginners


Dan Morris - 2016
    Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.

The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

The Calculus 7


Louis Leithold - 1995
    The author has sought to utlilize the technology now available for the teaching and learning of calculus. The hand-held graphics calculator is one such form of technology that has been integrated into the book. Topics in algebra, trigonometry, and analytical geometry appear in the Appendix.

Thinking In Numbers: On Life, Love, Meaning, and Math


Daniel Tammet - 2012
    In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired by the complexity of snowflakes, Anne Boleyn's eleven fingers, or his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. Thinking In Numbers will change the way you think about math and fire your imagination to see the world with fresh eyes.

Fifty Challenging Problems in Probability with Solutions


Frederick Mosteller - 1965
    Selected for originality, general interest, or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the mathematically minded. Detailed solutions. Illustrated.

All the Mathematics You Missed


Thomas A. Garrity - 2001
    This book will offer students a broad outline of essential mathematics and will help to fill in the gaps in their knowledge. The author explains the basic points and a few key results of all the most important undergraduate topics in mathematics, emphasizing the intuitions behind the subject. The topics include linear algebra, vector calculus, differential and analytical geometry, real analysis, point-set topology, probability, complex analysis, set theory, algorithms, and more. An annotated bibliography offers a guide to further reading and to more rigorous foundations.

Paradox: The Nine Greatest Enigmas in Physics


Jim Al-Khalili - 2012
    A fun and fascinating look at great scientific paradoxes.   Throughout history, scientists have come up with theories and ideas that just don't seem to make sense.  These we call paradoxes.  The paradoxes Al-Khalili offers are drawn chiefly from physics and astronomy and represent those that have stumped some of the finest minds.  For example, how can a cat be both dead and alive at the same time?  Why will Achilles never beat a tortoise in a race, no matter how fast he runs?  And how can a person be ten years older than his twin?   With elegant explanations that bring the reader inside the mind of those who've developed them, Al-Khalili helps us to see that, in fact, paradoxes can be solved if seen from the right angle.  Just as surely as Al-Khalili narrates the enduring fascination of these classic paradoxes, he reveals their underlying logic.  In doing so, he brings to life a select group of the most exciting concepts in human knowledge.  Paradox is mind-expanding fun.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, Lego, and Rubber Ducks


Will Kurt - 2019
    But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that.This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples.By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to:- How to measure your own level of uncertainty in a conclusion or belief- Calculate Bayes theorem and understand what it's useful for- Find the posterior, likelihood, and prior to check the accuracy of your conclusions- Calculate distributions to see the range of your data- Compare hypotheses and draw reliable conclusions from themNext time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.