Book picks similar to
Introductory Mathematical Economics by D. Wade Hands
economics-politics-and-society
mathematics
math
pallet-18
Get Rich in Real Estate: Your Step-by-Step Guide to Acquiring Properties in NYC
Elliot Bogod - 2019
The author, Elliot Bogod, is a Founder and Managing Director of Broadway Realty, a real estate brokerage in Manhattan. With over twenty years experience, Elliot has sold over $2 billion in New York real estate. In this book, you will find: • A list of “magic words” often used in real estate investment, with clear and detailed explanations • Methods for evaluating the locations for your investments, using vibrant Manhattan neighborhoods as an example. • Review of different types of residential investments: condominiums, co-ops and townhouses • Detailed advice on investing in various types of commercial real estate: retail locations, offices, restaurants, hotels, garages and others • Multiple strategies, tactics and techniques for building wealth through your investments • Clear and concise information on mortgages, taxes and laws • Methods for achieving success through managing a team of experts working for you
How to Build a Brain and 34 Other Really Interesting Uses of Maths
Richard Elwes - 2010
You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.
Mind Tools: The Five Levels of Mathematical Reality
Rudy Rucker - 1987
Reveals mathematics' great power as an alternative language for understanding things and explores such concepts as logic as a computing tool, digital versus analog processes and communication as information transmission.
Computer Science Illuminated
Nell B. Dale - 2002
Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.
Number Freak: From 1 to 200- The Hidden Language of Numbers Revealed
Derrick Niederman - 2009
Includes such gems as:? There are 42 eyes in a deck of cards, and 42 dots on a pair of dice ? In order to fill in a map so that neighboring regions never get the same color, one never needs more than four colors ? Hells Angels use the number 81 in their insignia because the initials H and A are the eighth and first numbers in the alphabet respectively
Student Solutions Manual for Contemporary Abstract Algebra
Joseph A. Gallian - 2009
Contains complete worked solutions to all regular exercises and computer exercises in the text; additional test questions and their solutions; an online laboratory manual for the computer algebra system GAP, with exercises tied to the book and an instructor answer key; and links on the author's website to true/false questions, flash cards, essays, software downloads, and other abstract algebra-related materials.
Electronic Communications System: Fundamentals Through Advanced
Wayne Tomasi - 1987
Comprehensive in scope and contemporary in coverage, this text introduces basic electronic and data communications fundamentals and explores their application.
Algebra II For Dummies
Mary Jane Sterling - 2004
To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!
The Type-Z Guide to Success: A Lazy Person’s Manifesto to Wealth and Fulfillment
Marc Allen - 2006
Not only that, but he considers it a key to his success. Here, he shows how anyone who is disorganized, inexperienced, overwhelmed, financially challenged, or just flat-out lazy can still create the life of their dreams. In the book’s short, inspiring introduction, Allen describes the system he devised on his 30th birthday that completely changed his life — a four-step system so simple to understand and easy to implement that it could be called revolutionary. In the following chapters, he details the importance of each of the four steps — dream, imagine, believe, create — and shows how to forge them into a blueprint for success. A final section includes tips for staying on — or getting back on — course. A quick, breezy read, the book uses centered bold type scattered throughout to ensure that even the laziest readers can grasp its essence in just a few minutes.
Visions of Infinity: The Great Mathematical Problems
Ian Stewart - 2013
Some of these problems are new, while others have puzzled and bewitched thinkers across the ages. Such challenges offer a tantalizing glimpse of the field's unlimited potential, and keep mathematicians looking toward the horizons of intellectual possibility.In Visions of Infinity, celebrated mathematician Ian Stewart provides a fascinating overview of the most formidable problems mathematicians have vanquished, and those that vex them still. He explains why these problems exist, what drives mathematicians to solve them, and why their efforts matter in the context of science as a whole. The three-century effort to prove Fermat's last theorem—first posited in 1630, and finally solved by Andrew Wiles in 1995—led to the creation of algebraic number theory and complex analysis. The Poincaré conjecture, which was cracked in 2002 by the eccentric genius Grigori Perelman, has become fundamental to mathematicians' understanding of three-dimensional shapes. But while mathematicians have made enormous advances in recent years, some problems continue to baffle us. Indeed, the Riemann hypothesis, which Stewart refers to as the “Holy Grail of pure mathematics,” and the P/NP problem, which straddles mathematics and computer science, could easily remain unproved for another hundred years.An approachable and illuminating history of mathematics as told through fourteen of its greatest problems, Visions of Infinity reveals how mathematicians the world over are rising to the challenges set by their predecessors—and how the enigmas of the past inevitably surrender to the powerful techniques of the present.
Engineering Mathematics
K.A. Stroud - 2001
Fully revised to meet the needs of the wide range of students beginning engineering courses, this edition has an extended Foundation section including new chapters on graphs, trigonometry, binomial series and functions and a CD-ROM
Elliptic Tales: Curves, Counting, and Number Theory
Avner Ash - 2012
The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.
Calculus, Better Explained: A Guide To Developing Lasting Intuition
Kalid Azad - 2015
Learn the essential concepts using concrete analogies and vivid diagrams, not mechanical definitions. Calculus isn't a set of rules, it's a specific, practical viewpoint we can apply to everyday thinking. Frustrated With Abstract, Mechanical Lessons? I was too. Despite years of classes, I didn't have a strong understanding of calculus concepts. Sure, I could follow mechanical steps, but I had no lasting intuition. The classes I've seen are too long, taught in the wrong order, and without solid visualizations. Here's how this course is different: 1) It gets to the point. A typical class plods along, saving concepts like Integrals until Week 8. I want to see what calculus can offer by Minute 8. Each compact, tightly-written lesson can be read in 15 minutes. 2) Concepts are taught in their natural order. Most classes begin with the theory of limits, a technical concept discovered 150 years after calculus was invented. That's like putting a new driver into a Formula-1 racecar on day 1. We can begin with the easy-to-grasp concepts discovered 2000 years ago. 3) It has vivid analogies and visualizations. Calculus is usually defined as the "study of change"... which sounds like history or geology. Instead of an abstract definition, we'll see calculus a step-by-step viewpoint to explore patterns. 4) It's written by a human, for humans. I'm not a haughty professor or strict schoolmarm. I'm a friend who saw a fun way to internalize some difficult ideas. This course is a chat over coffee, not a keep-your-butt-in-your-seat lecture. The goal is to help you grasp the Aha! moments behind calculus in hours, not a painful semester (or a decade, in my case). Join Thousands Of Happy Readers Here's a few samples of anonymous feedback as people went through the course. The material covers a variety of levels, whether you're looking for intuitive appreciation or the specifics of the rules. "I've done all of this stuff before, and I do understand calculus intuitively, but this was the most fun I've had going through this kind of thing. The informal writing and multitude of great analogies really helps this become an enjoyable read and the rest is simple after that - you make this seem easy, but at the same time, you aren't doing it for us…This is what math education is supposed to be like :)" "I have psychology and medicine background so I relate your ideas to my world. To me the most useful idea was what each circle production feels like. Rings are natural growth…Slices are automatable chunks and automation cheapens production… Boards in the shape on an Arch are psychologically most palatable for work (wind up, hard part, home stretch). Brilliant and kudos, from one INTP to another." "I like how you're introducing both derivatives and integrals at the same time - it's really helps with understanding the relationship between them. Also, I appreciate how you're coming from such a different angle than is traditionally taken - it's always interesting to see where you decide to go next." "That was breathtaking. Seriously, mail my air back please, I've grown used to it. Beautiful work, thank you. Lesson 15 was masterful. I am starting to feel calculus. "d/dx is good" (sorry, couldn't resist!)."
Elementary Number Theory and Its Applications
Kenneth H. Rosen - 1984
The Fourth Edition builds on this strength with new examples, additional applications and increased cryptology coverage. Up-to-date information on the latest discoveries is included.Elementary Number Theory and Its Applications provides a diverse group of exercises, including basic exercises designed to help students develop skills, challenging exercises and computer projects. In addition to years of use and professor feedback, the fourth edition of this text has been thoroughly accuracy checked to ensure the quality of the mathematical content and the exercises.