The Inflationary Universe: The Quest for a New Theory of Cosmic Origins


Alan Guth - 1997
    Guth’s startling theory—widely regarded as one of the most important contributions to science during the twentieth century—states that the big bang was set into motion by a period of hyper-rapid “inflation,” lasting only a billion-trillion-billionth of a second. The Inflationary Universe is the passionate story of one leading scientist’s effort to look behind the cosmic veil and explain how the universe began.

The History of Astronomy: A Very Short Introduction


Michael Hoskin - 2003
    Historical records are first found in Babylon and Egypt, and after two millennia the arithmetical astronomy of the Babylonians merged with the Greek geometrical approach to culminate in the Almagest of Ptolemy. This legacy was transmitted to the Latin West via Islam, and led to Copernicus's claim that the Earth is in motion. In justifying this Kepler converted astronomy into a branch of dynamics, leading to Newton's universal law of gravity. The book concludes with eighteenth- and nineteenth-century applications of Newton's law, and the first explorations of the universe of stars.

A Fortunate Universe


Geraint F. Lewis - 2016
    Join us on a journey through how we understand the Universe, from its most basic particles and forces, to planets, stars and galaxies, and back through cosmic history to the birth of the cosmos. Conflicting notions about our place in the Universe are defined, defended and critiqued from scientific, philosophical and religious viewpoints. The authors' engaging and witty style addresses what fine-tuning might mean for the future of physics and the search for the ultimate laws of nature. Tackling difficult questions and providing thought-provoking answers, this volumes challenges us to consider our place in the cosmos, regardless of our initial convictions.

Mercury Rising: John Glenn, John Kennedy, and the New Battleground of the Cold War


Jeff Shesol - 2021
    If the United States couldn’t catch up to the Soviets in space, how could it compete with them on Earth? That was the question facing John F. Kennedy at the height of the Cold War—a perilous time when the Soviet Union built the wall in Berlin, tested nuclear bombs more destructive than any in history, and beat the United States to every major milestone in space. The race to the heavens seemed a race for survival—and America was losing.On February 20, 1962, when John Glenn blasted into orbit aboard Friendship 7, his mission was not only to circle the planet; it was to calm the fears of the free world and renew America’s sense of self-belief. Mercury Rising re-creates the tension and excitement of a flight that shifted the momentum of the space race and put the United States on the path to the moon. Drawing on new archival sources, personal interviews, and previously unpublished notes by Glenn himself, Mercury Rising reveals how the astronaut’s heroics lifted the nation’s hopes in what Kennedy called the "hour of maximum danger."

The End of Everything (Astrophysically Speaking)


Katie Mack - 2020
    With the Big Bang, it went from a state of unimaginable density to an all-encompassing cosmic fireball to a simmering fluid of matter and energy, laying down the seeds for everything from dark matter to black holes to one rocky planet orbiting a star near the edge of a spiral galaxy that happened to develop life. But what happens at the end of the story? In billions of years, humanity could still exist in some unrecognizable form, venturing out to distant space, finding new homes and building new civilizations. But the death of the universe is final. What might such a cataclysm look like? And what does it mean for us? Dr. Katie Mack has been contemplating these questions since she was eighteen, when her astronomy professor first informed her the universe could end at any moment, setting her on the path toward theoretical astrophysics. Now, with lively wit and humor, she unpacks them in The End of Everything, taking us on a mind-bending tour through each of the cosmos’ possible finales: the Big Crunch; the Heat Death; Vacuum Decay; the Big Rip; and the Bounce. In the tradition of Neil DeGrasse’s bestseller Astrophysics for People in a Hurry, Mack guides us through major concepts in quantum mechanics, cosmology, string theory, and much more, in a wildly fun, surprisingly upbeat ride to the farthest reaches of everything we know.

The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World


Edward Dolnick - 2011
    A meld of history and science, this book is a group portrait of some of the greatest minds who ever lived as they wrestled with nature’s most sweeping mysteries. The answers they uncovered still hold the key to how we understand the world.At the end of the seventeenth century—an age of religious wars, plague, and the Great Fire of London—when most people saw the world as falling apart, these earliest scientists saw a world of perfect order. They declared that, chaotic as it looked, the universe was in fact as intricate and perfectly regulated as a clock. This was the tail end of Shakespeare’s century, when the natural land the supernatural still twined around each other. Disease was a punishment ordained by God, astronomy had not yet broken free from astrology, and the sky was filled with omens. It was a time when little was known and everything was new. These brilliant, ambitious, curious men believed in angels, alchemy, and the devil, and they also believed that the universe followed precise, mathematical laws—-a contradiction that tormented them and changed the course of history.The Clockwork Universe is the fascinating and compelling story of the bewildered geniuses of the Royal Society, the men who made the modern world.

Reinventing Gravity: A Physicist Goes Beyond Einstein


John W. Moffat - 2008
    But what if, nonetheless, Einstein got it wrong?Since the 1930s, physicists have noticed an alarming discrepancy between the universe as we see it and the universe that Einstein's theory of relativity predicts. There just doesn't seem to be enough stuff out there for everything to hang together. Galaxies spin so fast that, based on the amount of visible matter in them, they ought to be flung to pieces, the same way a spinning yo-yo can break its string. Cosmologists tried to solve the problem by positing dark matter—a mysterious, invisible substance that surrounds galaxies, holding the visible matter in place—and particle physicists, attempting to identify the nature of the stuff, have undertaken a slew of experiments to detect it. So far, none have.Now, John W. Moffat, a physicist at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, offers a different solution to the problem. The cap­stone to a storybook career—one that began with a correspondence with Einstein and a conversation with Niels Bohr—Moffat's modified gravity theory, or MOG, can model the movements of the universe without recourse to dark matter, and his work chal­lenging the constancy of the speed of light raises a stark challenge to the usual models of the first half-million years of the universe's existence.This bold new work, presenting the entirety of Moffat's hypothesis to a general readership for the first time, promises to overturn everything we thought we knew about the origins and evolution of the universe.

Astronomy: A Beginner's Guide to the Universe


Eric Chaisson - 1995
    Astronomy: A Beginner's Guide to the Universe.

The Big Questions The Universe


Stuart Clark - 2010
    Each 3000-word essay simply and concisely examines a question that has eternally perplexed enquiring minds, providing answers from history's great thinkers. This ambitious project is a unique distillation of humanity's best ideas. In Big Questions: The Universe, Dr Stuart Clark tackles the 20 key questions of astronomy and cosmology: What is the universe? How big is the universe? How old is the universe? What are stars made from? How did the Universe form? Why do the planets stay in orbit? Was Einstein right? What are black holes? How did the Earth form? What were the first celestial objects? What is dark matter? What is dark energy? Are we really made from stardust? Is there life on Mars? Are there other intelligent beings? Can we travel through time and space? Can the laws of physics change? Are there alternative universes? What will be the fate of the universe? Is there cosmological evidence for God? About the Author: Stuart Clark Dr Stuart Clark is author of the critically acclaimed The Sun Kings and a former editor of the UK's best-selling astronomy magazine, Astronomy Now. He currently writes for the European Space Agency and is a regular contributor to magazines such as New Scientist and BBC Focus. Dr Clark's previous books also include Deep Space (Quercus 2007), Galaxy (Quercus 2008), Journey to the Stars and Universe in Focus: The Story of the Hubble Telescope.

The Stardust Revolution: The New Story of Our Origin in the Stars


Jacob Berkowitz - 2012
    The sixteenth and seventeenth centuries witnessed the Copernican Revolution, which bodychecked the Earth as the pivot point of creation and joined us with the rest of the cosmos as one planet among many orbiting the Sun. Three centuries later came the second great scientific revolution: the Darwinian Revolution. It removed us from a distinct, divine biological status to place us wholly in the ebb and flow of all terrestrial life. This book describes how we’re in the midst of a third great scientific revolution, five centuries in the making: the Stardust Revolution. It is the merging of the once-disparate realms of astronomy and evolutionary biology, and of the Copernican and Darwinian Revolutions, placing life in a cosmic context. This book takes readers on a grand journey that begins on the summit of California’s Mount Wilson, where astronomers first realized that the universe is both expanding and evolving, to a radio telescope used to identify how organic molecules—the building blocks of life—are made by stars. It’s an epic story told through a scientific cast that includes some of the twentieth century’s greatest minds—including Nobel laureate Charles Townes, who discovered cosmic water—as well as the most ambitious scientific explorers of the twenty-first century, those racing to find another living planet. Today, an entirely new breed of scientists—astrobiologists and astrochemists—are taking the study of life into the space age. Astrobiologists study the origins, evolution, and distribution of life, not just on Earth, but in the universe. Stardust science is filling in the missing links in our evolutionary story, ones that extend our family tree back to the stars.

You Are Here: A Portable History of the Universe


Christopher Potter - 2008
    Christopher Potter’s narrative is as imaginative, ingenious, and elegantly concise as it is user-friendly.” — Sylvia Nasar, author of A Beautiful Mind“A personal, brilliant, and often amusing account . . . . An idiosyncratic, encyclopedic blitzkrieg of a book.” —The Boston Globe“The Verdict: Read.” — TimeChristopher Potter’s You Are Here is a lively and accessible biography of the universe—how it fits together and how we fit into it—in the style of science writers like Richard Dawkins, Bill Bryson, and Richard Feynman, as seen through the lens of today’s most cutting-edge scientific thinking.

The Universe in the Rearview Mirror: How Hidden Symmetries Shape Reality


Dave Goldberg - 2013
    Why is the sky dark at night? Is it possible to build a shrink-ray gun? If there is antimatter, can there be antipeople? Why are past, present, and future our only options? Are time and space like a butterfly's wings?No one but Dave Goldberg, the coolest nerd physicist on the planet, could give a hyper drive tour of the universe like this one. Not only does he answer the questions your stoner friends came up with in college, but he also reveals the most profound discoveries of physics with infectious, Carl Sagan–like enthusiasm and accessibility.Goldberg’s narrative is populated with giants from the history of physics, and the biggest turns out to be an unsung genius and Nazi holocaust escapee named Emmy Noether—the other Einstein. She was unrecognized, even unpaid, throughout most of her career simply because she was a woman. Nevertheless, her theorem relating conservation laws to symmetries is widely regarded to be as important as Einstein’s notion of the speed of light. Einstein himself said she was “the most significant creative mathematical genius thus far produced since the higher education of women began.”Symmetry is the unsung great idea behind all the big physics of the last one hundred years—and what lies ahead. In this book, Goldberg makes mindbending science not just comprehensible but gripping. Fasten your seat belt.

Einstein's Telescope: The Hunt for Dark Matter and Dark Energy in the Universe


Evalyn Gates - 2009
    Dark matter. These strange and invisible substances don't just sound mysterious: their unexpected appearance in the cosmic census is upending long-held notions about the nature of the Universe. Astronomers have long known that the Universe is expanding, but everything they could see indicated that gravity should be slowing this spread. Instead, it appears that the Universe is accelerating its expansion and that something stronger than gravity--dark energy--is at work. In Einstein's Telescope Evalyn Gates, a University of Chicago astrophysicist, transports us to the edge of contemporary science to explore the revolutionary tool that unlocks the secrets of these little-understood cosmic constituents. Based on Einstein's theory of general relativity, gravitational lensing, or "Einstein's Telescope," is enabling new discoveries that are taking us toward the next revolution in scientific thinking--one that may change forever our notions of where the Universe came from and where it is going.

History of Astronomy


George Forbes - 1909
    Purchasers are entitled to a free trial membership in the General Books Club where they can select from more than a million books without charge. Subjects: Astronomy; History / General; Juvenile Nonfiction / Science

Calculating the Cosmos: How Mathematics Unveils the Universe


Ian Stewart - 2016
    He describes the architecture of space and time, dark matter and dark energy, how galaxies form, why stars implode, how everything began, and how it's all going to end. He considers parallel universes, the fine-tuning of the cosmos for life, what forms extraterrestrial life might take, and the likelihood of life on Earth being snuffed out by an asteroid.Beginning with the Babylonian integration of mathematics into the study of astronomy and cosmology, Stewart traces the evolution of our understanding of the cosmos: How Kepler's laws of planetary motion led Newton to formulate his theory of gravity. How, two centuries later, tiny irregularities in the motion of Mars inspired Einstein to devise his general theory of relativity. How, eighty years ago, the discovery that the universe is expanding led to the development of the Big Bang theory of its origins. How single-point origin and expansion led cosmologists to theorize new components of the universe, such as inflation, dark matter, and dark energy. But does inflation explain the structure of today's universe? Does dark matter actually exist? Could a scientific revolution that will challenge the long-held scientific orthodoxy and once again transform our understanding of the universe be on the way? In an exciting and engaging style, Calculating the Cosmos is a mathematical quest through the intricate realms of astronomy and cosmology.