Book picks similar to
Common Sense of Science by Jacob Bronowski
science
philosophy
non-fiction
philosophy-of-science
Why Truth Matters
Ophelia Benson - 2006
Yet in the late twentieth century truth became suddenly rather unfashionable. The precedence given to assorted political and ideological agendas, along with the rise of relativism, postmodernism and pseudoscience in academia, led to a decline both of truth as a serious subject, and an intellectual tradition that began with the Enlightenment.Why Truth Matters is a timely, incisive and entertaining look at how and why modern thought and culture lost sight of the importance of truth. It is also an eloquent and inspiring argument for restoring truth to its rightful place. Jeremy Stangroom and Ophelia Benson, editors of the successful butterfliesandwheels website—itself established to "fight fashionable nonsense"—identify and debunk such senselessness, and the spurious claims made for it, in all its forms. Their account ranges over religious fundamentalism, Holocaust denial, the challenges of postmodernism and deconstruction, the wilful misinterpretation of evolutionary biology, identity politics and wishful thinking.Why Truth Matters is both a rallying cry for the Enlightenment vision and an essential read for anyone who's ever been bored, frustrated, bewildered or plain enraged by the worst excesses of the fashionable intelligentsia.
The Nothing That Is: A Natural History of Zero
Robert M. Kaplan - 1999
As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.
Physics and Philosophy: The Revolution in Modern Science
Werner Heisenberg - 1958
The theme of Heisenberg's exposition is that words and concepts familiar in daily life can lose their meaning in the world of relativity and quantum physics. This in turn has profound philosophical implications for the nature of reality and for our total world view.
Gravity: How the Weakest Force in the Universe Shaped Our Lives
Brian Clegg - 2012
Of these, gravity may the most obvious, but it is also the most mysterious. Newton managed to predict the force of gravity but couldn't explain how it worked at a distance. Einstein picked up on the simple premise that gravity and acceleration are interchangeable to devise his mind-bending general relativity, showing how matter warps space and time. Not only did this explain how gravity worked – and how apparently simple gravitation has four separate components – but it predicted everything from black holes to gravity's effect on time. Whether it's the reality of anti-gravity or the unexpected discovery that a ball and a laser beam drop at the same rate, gravity is the force that fascinates.
The Grand Design
Stephen Hawking - 2010
In their new book, Stephen Hawking and Leonard Mlodinow present the most recent scientific thinking about the mysteries of the universe, in nontechnical language marked by both brilliance and simplicity. In The Grand Design they explain that according to quantum theory, the cosmos does not have just a single existence or history, but rather that every possible history of the universe exists simultaneously. When applied to the universe as a whole, this idea calls into question the very notion of cause and effect. But the “top-down” approach to cosmology that Hawking and Mlodinow describe would say that the fact that the past takes no definite form means that we create history by observing it, rather than that history creates us. The authors further explain that we ourselves are the product of quantum fluctuations in the very early universe, and show how quantum theory predicts the “multiverse”—the idea that ours is just one of many universes that appeared spontaneously out of nothing, each with different laws of nature.Along the way Hawking and Mlodinow question the conventional concept of reality, posing a “model-dependent” theory of reality as the best we can hope to find. And they conclude with a riveting assessment of M-theory, an explanation of the laws governing us and our universe that is currently the only viable candidate for a complete “theory of everything.” If confirmed, they write, it will be the unified theory that Einstein was looking for, and the ultimate triumph of human reason.A succinct, startling, and lavishly illustrated guide to discoveries that are altering our understanding and threatening some of our most cherished belief systems, The Grand Design is a book that will inform—and provoke—like no other.'
From Eternity to Here: The Quest for the Ultimate Theory of Time
Sean Carroll - 2009
In the hands of one of today’s hottest young physicists, that simple fact of breakfast becomes a doorway to understanding the Big Bang, the universe, and other universes, too. In From Eternity to Here, Sean Carroll argues that the arrow of time, pointing resolutely from the past to the future, owes its existence to conditions before the Big Bang itself, a period modern cosmology of which Einstein never dreamed. Increasingly, though, physicists are going out into realms that make the theory of relativity seem like child’s play. Carroll’s scenario is not only elegant, it’s laid out in the same easy-to- understand language that has made his group blog, Cosmic Variance, the most popular physics blog on the Net. From Eternity to Here uses ideas at the cutting edge of theoretical physics to explore how properties of spacetime before the Big Bang can explain the flow of time we experience in our everyday lives. Carroll suggests that we live in a baby universe, part of a large family of universes in which many of our siblings experience an arrow of time running in the opposite direction. It’s an ambitious, fascinating picture of the universe on an ultra-large scale, one that will captivate fans of popular physics blockbusters like Elegant Universe and A Brief History of Time.
The Story Of Thought
Bryan Magee - 1998
Magee does a great job of balancing the various aspects of the history of philosophy that may be of interest to different readers. Each philosopher is covered in a section of a few pages outlining the thinker's major ideas, but also containing sidebars with famous quotes, major works, related topics and historical notes. The book is organized chronologically and philosophers are grouped into intellectual movements, introduced and expanded by insets. This format allows the book to be used as a point reference on a single thinker or school of thought, but also reads well from cover to cover as the "story of thought". If you are looking for a good introduction to philosophy, it would be hard to find a more complete, accessible, and universally appealing resource.
A Universe from Nothing: Why There Is Something Rather Than Nothing
Lawrence M. Krauss - 2012
With a new preface about the significance of the discovery of the Higgs particle, A Universe from Nothing uses Krauss’s characteristic wry humor and wonderfully clear explanations to take us back to the beginning of the beginning, presenting the most recent evidence for how our universe evolved—and the implications for how it’s going to end. Provocative, challenging, and delightfully readable, this is a game-changing look at the most basic underpinning of existence and a powerful antidote to outmoded philosophical, religious, and scientific thinking.
Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
Michio Kaku - 2011
The result is the most authoritative and scientifically accurate description of the revolutionary developments taking place in medicine, computers, artificial intelligence, nanotechnology, energy production, and astronautics.In all likelihood, by 2100 we will control computers via tiny brain sensors and, like magicians, move objects around with the power of our minds. Artificial intelligence will be dispersed throughout the environment, and Internet-enabled contact lenses will allow us to access the world's information base or conjure up any image we desire in the blink of an eye.Meanwhile, cars will drive themselves using GPS, and if room-temperature superconductors are discovered, vehicles will effortlessly fly on a cushion of air, coasting on powerful magnetic fields and ushering in the age of magnetism.Using molecular medicine, scientists will be able to grow almost every organ of the body and cure genetic diseases. Millions of tiny DNA sensors and nanoparticles patrolling our blood cells will silently scan our bodies for the first sign of illness, while rapid advances in genetic research will enable us to slow down or maybe even reverse the aging process, allowing human life spans to increase dramatically.In space, radically new ships—needle-sized vessels using laser propulsion—could replace the expensive chemical rockets of today and perhaps visit nearby stars. Advances in nanotechnology may lead to the fabled space elevator, which would propel humans hundreds of miles above the earth's atmosphere at the push of a button.But these astonishing revelations are only the tip of the iceberg. Kaku also discusses emotional robots, antimatter rockets, X-ray vision, and the ability to create new life-forms, and he considers the development of the world economy. He addresses the key questions: Who are the winner and losers of the future? Who will have jobs, and which nations will prosper?All the while, Kaku illuminates the rigorous scientific principles, examining the rate at which certain technologies are likely to mature, how far they can advance, and what their ultimate limitations and hazards are. Synthesizing a vast amount of information to construct an exciting look at the years leading up to 2100, Physics of the Future is a thrilling, wondrous ride through the next 100 years of breathtaking scientific revolution. (From the Hardcover Edition)(Duration: 15:39:15)
Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom
Sean B. Carroll - 2005
Evo Devo Evolutionary Developmental Biology is the new science that has finally cracked open the box. Within the pages of his rich and riveting book, Sean B. Carroll explains how we are discovering that complex life is ironically much simpler than anyone ever expected.
The Fifth Miracle: The Search for the Origin and Meaning of Life
Paul C.W. Davies - 1999
Three and a half billion years ago, Mars resembled earth. It was warm and wet and could have supported primitive organisms. If life once existed on Mars, might it have originated there and traveled to earth inside meteorites blasted into space by cosmic impacts? Davies builds on recent scientific discoveries and theories to address larger questions of existence: What, exactly, is life? Is it the inevitable by-product of physical laws, as many scientists maintain, or an almost miraculous accident? Are we alone in the universe, or will life emerge on all earthlike planets? And if there is life elsewhere in the universe, is it preordained to evolve toward greater complexity and intelligence? Through his search for answers to these questions, Davies explores the ultimate mystery of mankind's existence -- who we are and what our place might be in the unfolding drama of the cosmos.
What We Believe But Cannot Prove: Today's Leading Thinkers on Science in the Age of Certainty
John Brockman - 2005
Some of the most potent beliefs among brilliant minds are based on supposition alone -- yet that is enough to push those minds toward making the theory viable.Eminent cultural impresario, editor, and publisher of Edge (www.edge.org), John Brockman asked a group of leading scientists and thinkers to answer the question: What do you believe to be true even though you cannot prove it? This book brings together the very best answers from the most distinguished contributors. Thought-provoking and hugely compelling, this collection of bite-size thought-experiments is a fascinating insight into the instinctive beliefs of some of the most brilliant minds today.
The 4% Universe: Dark Matter, Dark Energy, and the Race to Discover the Rest of Reality
Richard Panek - 2010
In the past few years, a handful of scientists have been in a race to explain a disturbing aspect of our universe: only 4 percent of it consists of the matter that makes up you, me, our books, and every planet, star, and galaxy. The rest—96 percent of the universe—is completely unknown. Richard Panek tells the dramatic story of how scientists reached this conclusion, and what they’re doing to find this "dark" matter and an even more bizarre substance called dark energy. Based on in-depth, on-site reporting and hundreds of interviews—with everyone from Berkeley’s feisty Saul Perlmutter and Johns Hopkins’s meticulous Adam Riess to the quietly revolutionary Vera Rubin—the book offers an intimate portrait of the bitter rivalries and fruitful collaborations, the eureka moments and blind alleys, that have fueled their search, redefined science, and reinvented the universe.
Science Fiction and Extro-Science Fiction, followed by "The Billiard Ball"
Quentin Meillassoux - 2013
With his usual argumentative rigor, he elucidates the distinction between science fiction, a genre in which science remains possible in spite of all the upheavals that may attend the world in which the tale takes place, and fiction outside-science, the literary concept he fashions in this book, a fiction in which science becomes impossible. With its investigations of the philosophies of Hume, Kant, and Popper, Science Fiction and Fiction of Worlds Outside-Science broadens the inquiry that Meillassoux began in After Finitude, thinking through the concrete possibilities and consequences of a chaotic world in which human beings can no longer resort to science to ground their existence. It is a significant milestone in the work of an emerging philosopher, which will appeal to readers of both philosophy and literature. The text is followed by Isaac Asimov’s essay “The Billiard Ball.”
Conjectures and Refutations: The Growth of Scientific Knowledge
Karl Popper - 1963
It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error.