Book picks similar to
Linkers and Loaders by John R. Levine
programming
computer-science
cs
tech
Kubernetes in Action
Marko Luksa - 2017
Each layer in their application is decoupled from other layers so they can scale, update, and maintain them independently.Kubernetes in Action teaches developers how to use Kubernetes to deploy self-healing scalable distributed applications. By the end, readers will be able to build and deploy applications in a proper way to take full advantage of the Kubernetes platform.Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Continuous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation
Jez Humble - 2010
This groundbreaking new book sets out the principles and technical practices that enable rapid, incremental delivery of high quality, valuable new functionality to users. Through automation of the build, deployment, and testing process, and improved collaboration between developers, testers, and operations, delivery teams can get changes released in a matter of hours-- sometimes even minutes-no matter what the size of a project or the complexity of its code base. Jez Humble and David Farley begin by presenting the foundations of a rapid, reliable, low-risk delivery process. Next, they introduce the "deployment pipeline," an automated process for managing all changes, from check-in to release. Finally, they discuss the "ecosystem" needed to support continuous delivery, from infrastructure, data and configuration management to governance. The authors introduce state-of-the-art techniques, including automated infrastructure management and data migration, and the use of virtualization. For each, they review key issues, identify best practices, and demonstrate how to mitigate risks. Coverage includes - Automating all facets of building, integrating, testing, and deploying software - Implementing deployment pipelines at team and organizational levels - Improving collaboration between developers, testers, and operations - Developing features incrementally on large and distributed teams - Implementing an effective configuration management strategy - Automating acceptance testing, from analysis to implementation - Testing capacity and other non-functional requirements - Implementing continuous deployment and zero-downtime releases - Managing infrastructure, data, components and dependencies - Navigating risk management, compliance, and auditing Whether you're a developer, systems administrator, tester, or manager, this book will help your organization move from idea to release faster than ever--so you can deliver value to your business rapidly and reliably.
Scalable Internet Architectures
Theo Schlossnagle - 2006
Scalable Internet Architectures addresses these concerns by teaching you both good and bad design methodologies for building new sites and how to scale existing websites to robust, high-availability websites. Primarily example-based, the book discusses major topics in web architectural design, presenting existing solutions and how they work. Technology budget tight? This book will work for you, too, as it introduces new and innovative concepts to solving traditionally expensive problems without a large technology budget. Using open source and proprietary examples, you will be engaged in best practice design methodologies for building new sites, as well as appropriately scaling both growing and shrinking sites. Website development help has arrived in the form of Scalable Internet Architectures.
Absolute Freebsd: The Complete Guide to Freebsd
Michael W. Lucas - 2007
But it can be even trickier to use than either Unix or Linux, and harder still to master.Absolute FreeBSD, 2nd Edition is your complete guide to FreeBSD, written by FreeBSD committer Michael W. Lucas. Lucas considers this completely revised and rewritten second edition of his landmark work to be his best work ever; a true product of his love for FreeBSD and the support of the FreeBSD community. Absolute FreeBSD, 2nd Edition covers installation, networking, security, network services, system performance, kernel tweaking, filesystems, SMP, upgrading, crash debugging, and much more, including coverage of how to:Use advanced security features like packet filtering, virtual machines, and host-based intrusion detection Build custom live FreeBSD CDs and bootable flash Manage network services and filesystems Use DNS and set up email, IMAP, web, and FTP services for both servers and clients Monitor your system with performance-testing and troubleshooting tools Run diskless systems Manage schedulers, remap shared libraries, and optimize your system for your hardware and your workload Build custom network appliances with embedded FreeBSD Implement redundant disks, even without special hardware Integrate FreeBSD-specific SNMP into your network management system. Whether you're just getting started with FreeBSD or you've been using it for years, you'll find this book to be the definitive guide to FreeBSD that you've been waiting for.
Software Engineering (International Computer Science Series)
Ian Sommerville - 1982
Restructured into six parts, this new edition covers a wide spectrum of software processes from initial requirements solicitation through design and development.
Thinking Forth
Leo Brodie - 1984
Published first in 1984, it could be among the timeless classics of computer books, such as Fred Brooks' The Mythical Man-Month and Donald Knuth's The Art of Computer Programming. Many software engineering principles discussed here have been rediscovered in eXtreme Programming, including (re)factoring, modularity, bottom-up and incremental design. Here you'll find all of those and more, such as the value of analysis and design, described in Leo Brodie's down-to-earth, humorous style, with illustrations, code examples, practical real life applications, illustrative cartoons, and interviews with Forth's inventor, Charles H. Moore as well as other Forth thinkers.
Effective Python: 59 Specific Ways to Write Better Python
Brett Slatkin - 2015
This makes the book random-access: Items are easy to browse and study in whatever order the reader needs. I will be recommending "Effective Python" to students as an admirably compact source of mainstream advice on a very broad range of topics for the intermediate Python programmer. " Brandon Rhodes, software engineer at Dropbox and chair of PyCon 2016-2017" It s easy to start coding with Python, which is why the language is so popular. However, Python s unique strengths, charms, and expressiveness can be hard to grasp, and there are hidden pitfalls that can easily trip you up. " Effective Python " will help you master a truly Pythonic approach to programming, harnessing Python s full power to write exceptionally robust and well-performing code. Using the concise, scenario-driven style pioneered in Scott Meyers best-selling "Effective C++, " Brett Slatkin brings together 59 Python best practices, tips, and shortcuts, and explains them with realistic code examples. Drawing on years of experience building Python infrastructure at Google, Slatkin uncovers little-known quirks and idioms that powerfully impact code behavior and performance. You ll learn the best way to accomplish key tasks, so you can write code that s easier to understand, maintain, and improve. Key features includeActionable guidelines for all major areas of Python 3.x and 2.x development, with detailed explanations and examples Best practices for writing functions that clarify intention, promote reuse, and avoid bugs Coverage of how to accurately express behaviors with classes and objects Guidance on how to avoid pitfalls with metaclasses and dynamic attributes More efficient approaches to concurrency and parallelism Better techniques and idioms for using Python s built-in modules Tools and best practices for collaborative development Solutions for debugging, testing, and optimization in order to improve quality and performance "
The Book of PoC||GTFO
Manul Laphroaig - 2017
Until now, the journal has only been available online or printed and distributed for free at hacker conferences worldwide.Consistent with the journal's quirky, biblical style, this book comes with all the trimmings: a leatherette cover, ribbon bookmark, bible paper, and gilt-edged pages. The book features more than 80 technical essays from numerous famous hackers, authors of classics like "Reliable Code Execution on a Tamagotchi," "ELFs are Dorky, Elves are Cool," "Burning a Phone," "Forget Not the Humble Timing Attack," and "A Sermon on Hacker Privilege." Twenty-four full-color pages by Ange Albertini illustrate many of the clever tricks described in the text.
HTML and CSS: Design and Build Websites
Jon Duckett - 2011
Joining the professional web designers and programmers are new audiences who need to know a little bit of code at work (update a content management system or e-commerce store) and those who want to make their personal blogs more attractive. Many books teaching HTML and CSS are dry and only written for those who want to become programmers, which is why this book takes an entirely new approach. • Introduces HTML and CSS in a way that makes them accessible to everyone—hobbyists, students, and professionals—and it’s full-color throughout • Utilizes information graphics and lifestyle photography to explain the topics in a simple way that is engaging • Boasts a unique structure that allows you to progress through the chapters from beginning to end or just dip into topics of particular interest at your leisureThis educational book is one that you will enjoy picking up, reading, then referring back to. It will make you wish other technical topics were presented in such a simple, attractive and engaging way!
Programming Perl
Tom Christiansen - 1991
The first edition of this book, Programming Perl, hit the shelves in 1990, and was quickly adopted as the undisputed bible of the language. Since then, Perl has grown with the times, and so has this book.Programming Perl is not just a book about Perl. It is also a unique introduction to the language and its culture, as one might expect only from its authors. Larry Wall is the inventor of Perl, and provides a unique perspective on the evolution of Perl and its future direction. Tom Christiansen was one of the first champions of the language, and lives and breathes the complexities of Perl internals as few other mortals do. Jon Orwant is the editor of The Perl Journal, which has brought together the Perl community as a common forum for new developments in Perl.Any Perl book can show the syntax of Perl's functions, but only this one is a comprehensive guide to all the nooks and crannies of the language. Any Perl book can explain typeglobs, pseudohashes, and closures, but only this one shows how they really work. Any Perl book can say that my is faster than local, but only this one explains why. Any Perl book can have a title, but only this book is affectionately known by all Perl programmers as "The Camel."This third edition of Programming Perl has been expanded to cover version 5.6 of this maturing language. New topics include threading, the compiler, Unicode, and other new features that have been added since the previous edition.
Elements of Clojure
Zachary Tellman - 2019
This is necessary because, in the words of Michael Polanyi, "we can know more than we can tell." Our design choices are not the result of an ineluctable chain of logic; they come from a deeper place, one which is visceral and inarticulate.Polanyi calls this "tacit knowledge", a thing which we only understand as part of something else. When we speak, we do not focus on making sounds, we focus on our words. We understand the muscular act of speech, but would struggle to explain it.To write software, we must learn where to draw boundaries. Good software is built through effective indirection. We seem to have decided that this skill can only be learned through practice; it cannot be taught, except by example. Our decisions may improve with time, but not our ability to explain them. It's true that the study of these questions cannot yield a closed-form solution for judging software design. We can make our software simple, but we cannot do the same to its problem domain, its users, or the physical world. Our tacit knowledge of this environment will always inform our designs.This doesn't mean that we can simply ignore our design process. Polanyi tells us that tacit knowledge only suffices until we fail, and the software industry is awash with failure. Our designs may never be provably correct, but we can give voice to the intuition that shaped them. Our process may always be visceral, but it doesn't have to be inarticulate.And so this book does not offer knowledge, it offers clarity. It is aimed at readers who know Clojure, but struggle to articulate the rationale of their designs to themselves and others. Readers who use other languages, but have a passing familiarity with Clojure, may also find this book useful.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.