Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"

Newton's Gift: How Sir Isaac Newton Unlocked the System of the World


David Berlinski - 2000
    Despite this, he has remained inaccessible to most modern readers, indisputably great but undeniably remote. In this witty, engaging, and often moving examination of Newton's life, David Berlinski recovers the man behind the mathematical breakthroughs. The story carries the reader from Newton's unremarkable childhood to his awkward undergraduate days at Cambridge through the astonishing year in which, working alone, he laid the foundation for his system of the world, his Principia Mathematica, and to the subsequent monumental feuds that poisoned his soul and wearied his supporters. An edifying appreciation of Newton's greatest accomplishment, Newton's Gift is also a touching celebration of a transcendent man.

The Story of Western Science: From the Writings of Aristotle to the Big Bang Theory


Susan Wise Bauer - 2015
    The Story of Western Science shows us the joy and importance of reading groundbreaking science writing for ourselves and guides us back to the masterpieces that have changed the way we think about our world, our cosmos, and ourselves.Able to be referenced individually, or read together as the narrative of Western scientific development, the book's twenty-eight succinct chapters lead readers from the first science texts by Hippocrates, Plato, and Aristotle through twentieth-century classics in biology, physics, and cosmology. The Story of Western Science illuminates everything from mankind's earliest inquiries to the butterfly effect, from the birth of the scientific method to the rise of earth science and the flowering of modern biology.Each chapter recommends one or more classic books and provides entertaining accounts of crucial contributions to science, vivid sketches of the scientist-writers, and clear explanations of the mechanics underlying each concept. The Story of Western Science reveals science to be a dramatic undertaking practiced by some of history's most memorable characters. It reminds us that scientific inquiry is a human pursuit—an essential, often deeply personal, sometimes flawed, frequently brilliant way of understanding the world.In the tradition of her perennial bestseller The-Well Educated Mind, Susan Wise Bauer delivers an accessible, entertaining, and illuminating springboard into the scientific education you never had.

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time


Jason Socrates Bardi - 2006
    But a dispute over its discovery sowed the seeds of discontent between two of the greatest scientific giants of all time - Sir Isaac Newton and Gottfried Wilhelm Leibniz." "Today Newton and Leibniz are generally considered the twin independent inventors of calculus. They are both credited with giving mathematics its greatest push forward since the time of the Greeks. Had they known each other under different circumstances, they might have been friends. But in their own lifetimes, the joint glory of calculus was not enough for either and each declared war against the other, openly and in secret." This long and bitter dispute has been swept under the carpet by historians - perhaps because it reveals Newton and Leibniz in their worst light - but The Calculus Wars tells the full story in narrative form for the first time. This history ultimately exposes how these twin mathematical giants were brilliant, proud, at times mad, and in the end completely human.

Hacking Matter: Levitating Chairs, Quantum Mirages, And The Infinite Weirdness Of Programmable Atoms


Wil McCarthy - 2003
    But it's coming, and when it does, it will change our lives as much as any invention ever has. Imagine being able to program matter itself-to change it, with the click of a cursor, from hard to soft, from paper to stone, from fluorescent to super-reflective to invisible. Supported by organizations ranging from Levi Strauss and IBM to the Defense Department, solid-state physicists in renowned laboratories are working to make it a reality. In this dazzling investigation, Wil McCarthy visits the laboratories and talks with the researchers who are developing this extraordinary technology, describes how they are learning to control it, and tells us where all this will lead. The possibilities are truly astonishing.

Dark Cosmos: In Search of Our Universe's Missing Mass and Energy


Dan Hooper - 2006
    Beginning with the publication of Albert Einstein's theory of relativity, through the wild revolution of quantum mechanics, and up until the physics of the modern day (including the astonishing revelation, in 1998, that the Universe is not only expanding, but doing so at an ever-quickening pace), much of what physicists have seen in our Universe suggests that much of our Universe is unseen—that we live in a dark cosmos.Everyone knows that there are things no one can see—the air you're breathing, for example, or, to be more exotic, a black hole. But what everyone does not know is that what we can see—a book, a cat, or our planet—makes up only 5 percent of the Universe. The rest—fully 95 percent—is totally invisible to us; its presence discernible only by the weak effects it has on visible matter around it.This invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together, while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would have ever expected: to discover what makes up our dark cosmos.

Who's Afraid of Schrodinger's Cat: All The New Science Ideas You Need To Keep Up With The New Thinking


Ian Marshall - 1997
    The cat lives in an opaque box with a fiendish device that randomly feeds it either food, allowing it to live, or poison, which kills it. But in the quantum world, all possibilities coexist and have a reality of their own, and they ensure that the cat is both alive and dead, simultaneously.Who's Afraid of Schrvdinger's Cat? is a clear, concise explanation of the new sciences of quantum mechanics, chaos and complexity theory, relativity, new theories of mind, and the new cosmology. It studies worlds beyond the realm of common sense, and the new kinds of thinking that we need to understand ourselves, our minds, and our human place in the larger scheme of things.

Fundamentals of Statistical and Thermal Physics


Frederick Reif - 1965
    The presentation develops physical insight by stressing the microscopic content of the theory.

The Universe and Dr. Einstein


Lincoln Barnett - 1948
    This book offers the opportunity to truly comprehend the workings of one of humanity's greatest minds. Acclaimed by Einstein himself, it is among the clearest, most readable expositions of relativity theory. It explains the problems Einstein faced, the experiments that led to his theories, and what his findings reveal about the forces that govern the universe. The concepts of relativity and the fourth dimension unfold with all the vivid excitement of research into the unknown, in language anyone can readily understand.

An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe


Leonard Susskind - 2004
    - A unique exposition of the foundations of the quantum theory of black holes including the impact of string theory, the idea of black hole complementarily and the holographic principlebull; Aims to educate the physicist or student of physics who is not an expert on string theory, on the revolution that has grown out of black hole physics and string theory

Brief Peeks Beyond: Critical Essays on Metaphysics, Neuroscience, Free Will, Skepticism and Culture


Bernardo Kastrup - 2015
    It addresses science and philosophy, explores the underlying nature of reality, the state of our society and culture, the influence of the mainstream media, the nature of free will and a number of other topics. Each of these examinations contributes an angle to an emerging idea gestalt that challenges present mainstream views and behaviors and offers a sane alternative. The book is organized as a series of short and self-contained essays, most of which can be read in under one hour.

The Complete Idiot's Guide to String Theory


George Musser - 2008
    The aim of this new revolution is to develop a "theory of everything" -- a set of laws of physics that will explain all that can be explained, ranging from the tiniest subatomic particle to the universe as a whole. Here, readers will learn the ideas behind the theories and their effects upon our world, our civilization, and ourselves.

Black Holes and Warped Spacetime


William J. Kaufmann III - 1979
    They infinitely warp space and time, allowing nothing to escape: not matter, not even light. They are stellar corpses that have crushed themselves into oblivion, seemingly suspending the traditional laws of physics. The Big bang may have peppered the universe with primordial black holes, as small as protons but as massive as mountains. The universe itself may be disappearing into the final black hole. Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime. The author's engrossing, non-technical explanations are enhanced by numerous illustrations.