Book picks similar to
Object-Oriented Programming in Python by Michael H. Goldwasser
python
want-read
computer-science
nonfiction
The Past Present and Future of JavaScript
Axel Rauschmayer - 2012
Now, hopes and expectations for JavaScript’s future are considerable.In this insightful report, Dr. Axel Rauschmayer explains how the combination of several technologies and opportunities in the past 15 years turned JavaScript’s fortunes. With that as a backdrop, he provides a detailed look at proposed new features and fixes in the next version, ECMAScript.next, and then presents his own JavaScript wish list—such as an integrated IDE.
Murach's PHP and MySQL
Joel Murach - 2010
Teaches developers how to build database-driven web applications using two of today's most popular open-source software tools, PHP and MySQL.
Programming the Raspberry Pi: Getting Started with Python
Simon Monk - 2012
In this book, electronics guru Simon Monk explains the basics of Raspberry Pi application development, while providing hands-on examples and ready-to-use scripts. See how to set up hardware and software, write and debug applications, create user-friendly interfaces, and control external electronics. Do-it-yourself projects include a hangman game, an LED clock, and a software-controlled roving robot. Boot up and configure your Raspberry Pi Navigate files, folders, and menus Create Python programs using the IDLE editor Work with strings, lists, and functions Use and write your own libraries, modules, and classes Add Web features to your programs Develop interactive games with Pygame Interface with devices through the GPIO port Build a Raspberry Pi Robot and LED Clock Build professional-quality GUIs using Tkinter
Python Programming for Beginners: An Introduction to the Python Computer Language and Computer Programming (Python, Python 3, Python Tutorial)
Jason Cannon - 2014
There can be so much information available that you can't even decide where to start. Or worse, you start down the path of learning and quickly discover too many concepts, commands, and nuances that aren't explained. This kind of experience is frustrating and leaves you with more questions than answers.Python Programming for Beginners doesn't make any assumptions about your background or knowledge of Python or computer programming. You need no prior knowledge to benefit from this book. You will be guided step by step using a logical and systematic approach. As new concepts, commands, or jargon are encountered they are explained in plain language, making it easy for anyone to understand. Here is what you will learn by reading Python Programming for Beginners:
When to use Python 2 and when to use Python 3.
How to install Python on Windows, Mac, and Linux. Screenshots included.
How to prepare your computer for programming in Python.
The various ways to run a Python program on Windows, Mac, and Linux.
Suggested text editors and integrated development environments to use when coding in Python.
How to work with various data types including strings, lists, tuples, dictionaries, booleans, and more.
What variables are and when to use them.
How to perform mathematical operations using Python.
How to capture input from a user.
Ways to control the flow of your programs.
The importance of white space in Python.
How to organize your Python programs -- Learn what goes where.
What modules are, when you should use them, and how to create your own.
How to define and use functions.
Important built-in Python functions that you'll use often.
How to read from and write to files.
The difference between binary and text files.
Various ways of getting help and find Python documentation.
Much more...
Every single code example in the book is available to download, providing you with all the Python code you need at your fingertips! Scroll up, click the Buy Now With 1 Click button and get started learning Python today!
How to Count (Programming for Mere Mortals, #1)
Steven Frank - 2011
unsigned numbers- Floating point and fixed point arithmeticThis short, easily understood book will quickly get you thinking like a programmer.
Hadoop: The Definitive Guide
Tom White - 2009
Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!
NSHipster: Obscure Topics in Cocoa & Objective C
Mattt Thompson - 2013
In cultivating a deep understanding and appreciation of Objective-C, its frameworks and ecosystem, one is able to create apps that delight and inspire users. Combining articles from NSHipster.com with new essays, this book is the essential guide for modern iOS and Mac OS X developers.
Natural Language Processing with Python
Steven Bird - 2009
With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Computer Science: An Overview
J. Glenn Brookshear - 1985
This bookpresents an introductory survey of computer science. It explores thebreadth of the subject while including enough depth to convey anhonest appreciation for the topics involved. The new edition includesreorganization of some key material for enhanced clarity (SoftwareEngineering and Artificial Intelligence chapters), new and expandedmaterial on Security and Data Abstractions, more on ethics anddifferent ethical theories in Chapter 0. Anyone interested in gaining athorough introduction to Computer Science.
Multiple View Geometry in Computer Vision
Richard Hartley - 2000
This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9
Introduction to Computation and Programming Using Python
John V. Guttag - 2013
It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.
Ubuntu Linux Toolbox: 1000+ Commands for Ubuntu and Debian Power Users
Christopher Negus - 2007
Try out more than 1,000 commands to find and get software, monitor system health and security, and access network resources. Then, apply the skills you learn from this book to use and administer desktops and servers running Ubuntu, Debian, and KNOPPIX or any other Linux distribution.
Learn Python 3 the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code (Zed Shaw's Hard Way Series)
Zed A. Shaw - 2017
The Hitchhiker's Guide to Python: Best Practices for Development
Kenneth Reitz - 2016
More than any other language, Python was created with the philosophy of simplicity and parsimony. Now 25 years old, Python has become the primary or secondary language (after SQL) for many business users. With popularity comes diversity--and possibly dilution.This guide, collaboratively written by over a hundred members of the Python community, describes best practices currently used by package and application developers. Unlike other books for this audience, The Hitchhiker's Guide is light on reusable code and heavier on design philosophy, directing the reader to excellent sources that already exist.
Absolute Beginner's Guide to C
Greg Perry - 1993
This bestseller talks to readers at their level, explaining every aspect of how to get started and learn the C language quickly. Readers also find out where to learn more about C. This book includes tear-out reference card of C functions and statements, a hierarchy chart, and other valuable information. It uses special icons, notes, clues, warnings, and rewards to make understanding easier. And the clear and friendly style presumes no programming knowledge.