Book picks similar to
Deep Learning: A Visual Approach by Andrew Glassner


ai
artificial-intelligence
computers
computer-science

The Little Book on CoffeeScript


Alex MacCaw - 2012
    Through example code, this guide demonstrates how CoffeeScript abstracts JavaScript, providing syntactical sugar and preventing many common errors. You’ll learn CoffeeScript’s syntax and idioms step by step, from basic variables and functions to complex comprehensions and classes.Written by Alex MacCaw, author of JavaScript Web Applications (O’Reilly), with contributions from CoffeeScript creator Jeremy Ashkenas, this book quickly teaches you best practices for using this language—not just on the client side, but for server-side applications as well. It’s time to take a ride with the little language that could.Discover how CoffeeScript’s syntax differs from JavaScriptLearn about features such as array comprehensions, destructuring assignments, and classesExplore CoffeeScript idioms and compare them to their JavaScript counterpartsCompile CoffeeScript files in static sites with the Cake build systemUse CommonJS modules to structure and deploy CoffeeScript client-side applicationsExamine JavaScript’s bad parts—including features CoffeeScript was able to fix

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics


Paul Teetor - 2011
    The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author

The Society of Mind


Marvin Minsky - 1985
    Mirroring his theory, Minsky boldly casts The Society of Mind as an intellectual puzzle whose pieces are assembled along the way. Each chapter -- on a self-contained page -- corresponds to a piece in the puzzle. As the pages turn, a unified theory of the mind emerges, like a mosaic. Ingenious, amusing, and easy to read, The Society of Mind is an adventure in imagination.

Storytelling with Data: A Data Visualization Guide for Business Professionals


Cole Nussbaumer Knaflic - 2015
    You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!

Numsense! Data Science for the Layman: No Math Added


Annalyn Ng - 2017
    Sold in over 85 countries and translated into more than 5 languages.---------------Want to get started on data science?Our promise: no math added.This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations and visuals.Popular concepts covered include:- A/B Testing- Anomaly Detection- Association Rules- Clustering- Decision Trees and Random Forests- Regression Analysis- Social Network Analysis- Neural NetworksFeatures:- Intuitive explanations and visuals- Real-world applications to illustrate each algorithm- Point summaries at the end of each chapter- Reference sheets comparing the pros and cons of algorithms- Glossary list of commonly-used termsWith this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.

Decision Trees and Random Forests: A Visual Introduction For Beginners: A Simple Guide to Machine Learning with Decision Trees


Chris Smith - 2017
     They are also used in countless industries such as medicine, manufacturing and finance to help companies make better decisions and reduce risk. Whether coded or scratched out by hand, both algorithms are powerful tools that can make a significant impact. This book is a visual introduction for beginners that unpacks the fundamentals of decision trees and random forests. If you want to dig into the basics with a visual twist plus create your own machine learning algorithms in Python, this book is for you.

R in Action


Robert Kabacoff - 2011
    The book begins by introducing the R language, including the development environment. Focusing on practical solutions, the book also offers a crash course in practical statistics and covers elegant methods for dealing with messy and incomplete data using features of R.About the TechnologyR is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data.About the BookR in Action is a language tutorial focused on practical problems. It presents useful statistics examples and includes elegant methods for handling messy, incomplete, and non-normal data that are difficult to analyze using traditional methods. And statistical analysis is only part of the story. You'll also master R's extensive graphical capabilities for exploring and presenting data visually. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's InsidePractical data analysis, step by stepInterfacing R with other softwareUsing R to visualize dataOver 130 graphsEight reference appendixes================================Table of ContentsPart I Getting startedIntroduction to RCreating a datasetGetting started with graphsBasic data managementAdvanced data managementPart II Basic methodsBasic graphsBasic statisticsPart III Intermediate methodsRegressionAnalysis of variancePower analysisIntermediate graphsRe-sampling statistics and bootstrappingPart IV Advanced methodsGeneralized linear modelsPrincipal components and factor analysisAdvanced methods for missing dataAdvanced graphics

R Graphics Cookbook: Practical Recipes for Visualizing Data


Winston Chang - 2012
    Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you're ready to get started.Use R's default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphing

Smarter Than Us: The Rise of Machine Intelligence


Stuart Armstrong - 2014
    The power of an artificial intelligence (AI) comes from its intelligence, not physical strength and laser guns. Humans steer the future not because we're the strongest or the fastest but because we're the smartest. When machines become smarter than humans, we'll be handing them the steering wheel. What promises—and perils—will these powerful machines present? Stuart Armstrong’s new book navigates these questions with clarity and wit.Can we instruct AIs to steer the future as we desire? What goals should we program into them? It turns out this question is difficult to answer! Philosophers have tried for thousands of years to define an ideal world, but there remains no consensus. The prospect of goal-driven, smarter-than-human AI gives moral philosophy a new urgency. The future could be filled with joy, art, compassion, and beings living worthwhile and wonderful lives—but only if we’re able to precisely define what a "good" world is, and skilled enough to describe it perfectly to a computer program.AIs, like computers, will do what we say—which is not necessarily what we mean. Such precision requires encoding the entire system of human values for an AI: explaining them to a mind that is alien to us, defining every ambiguous term, clarifying every edge case. Moreover, our values are fragile: in some cases, if we mis-define a single piece of the puzzle—say, consciousness—we end up with roughly 0% of the value we intended to reap, instead of 99% of the value.Though an understanding of the problem is only beginning to spread, researchers from fields ranging from philosophy to computer science to economics are working together to conceive and test solutions. Are we up to the challenge?A mathematician by training, Armstrong is a Research Fellow at the Future of Humanity Institute (FHI) at Oxford University. His research focuses on formal decision theory, the risks and possibilities of AI, the long term potential for intelligent life (and the difficulties of predicting this), and anthropic (self-locating) probability. Armstrong wrote Smarter Than Us at the request of the Machine Intelligence Research Institute, a non-profit organization studying the theoretical underpinnings of artificial superintelligence.

The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling


Ralph Kimball - 1996
    Here is a complete library of dimensional modeling techniques-- the most comprehensive collection ever written. Greatly expanded to cover both basic and advanced techniques for optimizing data warehouse design, this second edition to Ralph Kimball's classic guide is more than sixty percent updated.The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including:* Retail sales and e-commerce* Inventory management* Procurement* Order management* Customer relationship management (CRM)* Human resources management* Accounting* Financial services* Telecommunications and utilities* Education* Transportation* Health care and insuranceBy the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.This book is also available as part of the Kimball's Data Warehouse Toolkit Classics Box Set (ISBN: 9780470479575) with the following 3 books:The Data Warehouse Toolkit, 2nd Edition (9780471200246)The Data Warehouse Lifecycle Toolkit, 2nd Edition (9780470149775)The Data Warehouse ETL Toolkit (9780764567575)

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

Gödel, Escher, Bach: An Eternal Golden Braid


Douglas R. Hofstadter - 1979
    However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

Build Awesome Command-Line Applications in Ruby: Control Your Computer, Simplify Your Life


David B. Copeland - 2012
    With its simple commands, flags, and parameters, a well-formed command-line application is the quickest way to automate a backup, a build, or a deployment and simplify your life. As Ruby pro David Copeland explains, writing a command-line application that is self-documenting, robust, adaptable and forever useful is easier than you might think. Ruby is particularly suited to this task, since it combines high-level abstractions with "close to the metal" system interaction wrapped up in a concise, readable syntax. Moreover, Ruby has the support of a rich ecosystem of open-source tools and libraries. Ten insightful chapters each explain and demonstrate a command-line best practice. You'll see how to use these tools to elevate the lowliest automation script to a maintainable, polished application. You'll learn how to use free, open source parsers to create user-friendly command-line interfaces as well as command suites. You'll see how to use defaults to keep options simple for everyday users, while giving advanced users options for more complex tasks. There's no reason a command-line application should lack documentation, whether it's part of a help command or a man page; you'll find out when and how to use both. Your journey from command-line novice to pro ends with a look at valuable approaches to testing your apps, and includes some fun techniques for outside-the-box, colorful interfaces that will delight your users. With Ruby, the command line is not dead. Long live the command line.What You Need: All you'll need is Ruby, and the ability to install a few gems along the way. Examples written for Ruby 1.9.2, but 1.8.7 should work just as well.