Book picks similar to
Artificial Life: An Overview by Christopher G. Langton
science
non-fiction
itbio
engineering
Architects of Intelligence: The truth about AI from the people building it
Martin Ford - 2018
of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel).Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. Editorial reviews: "In his newest book, Architects of Intelligence, Martin Ford provides us with an invaluable opportunity to learn from some of the most prominent thought leaders about the emerging fields of science that are shaping our future."
-Al Gore, Former Vice President of the US
"AI is going to shape our future, and Architects of Intelligence offers a unique and fascinating collection of perspectives from the top researchers and entrepreneurs who are driving progress in the field."
- Eric Schmidt, former Chairman and CEO, Google
"The best way to understand the challenges and consequences of AGI is to see inside the minds of industry experts shaping the field. Architects of Intelligence gives you that power."
-Sam Altman, President of Y Combinator and co-chairman of OpenAI
"Architects of Intelligence gets you inside the minds of the people building the technology that is going to transform our world. This is a book that everyone should read."
-Reid Hoffman, Co-founder of LinkedIn
The Dream Machine: J.C.R. Licklider and the Revolution That Made Computing Personal
M. Mitchell Waldrop - 2001
C. R. Licklider, whose visionary dream of a human-computer symbiosis transformed the course of modern science and led to the development of the personal computer. Reprint.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Mirrors in the Brain: How Our Minds Share Actions and Emotions
Giacomo Rizzolatti - 2006
When we see someone in distress, we share that distress. When we see a great actor, musician or sportsperson perform at the peak of their abilities, it can feel like we are experiencing just something of what they are experiencing. Yet only recently, with the discover of mirror neurons, has it become clear just how this powerful sharing of experience is realised within the human brain. This book provides, for the first time, a systematic overview of mirror neurons, written by the man who first discovered them.In the early 1990's Giacomo Rizzolatti and his co-workers at the University of Parma discovered that some neurons had a surprising property. They responded not only when a subject performed a given action, but also when the subject observed someone else performing that same action. These results had a deep impact on cognitive neuroscience, leading the neuroscientist vs Ramachandran to predict that 'mirror neurons would do for psychology what DNA did for biology'. The unexpected properties of these neurons have not only attracted the attention of neuroscientists. Many sociologists, anthropologists, and even artists have been fascinated by mirror neurons. The director and playwright Peter Brook stated that mirror neurons throw new light on the mysterious link that is created each time actors take the stage and face their audience - the sight of a great actor performing activates in the brain of the observer the very same areas that are active in the performer - including both their actions and their emotions.Written in a highly accessible style, that conveys something of the excitement of this groundbreaking theory, Mirrors in the Brain is the definitive account of one the major scientific discoveries of the past 50 years.
The Hundred-Page Machine Learning Book
Andriy Burkov - 2019
During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
MATLAB: An Introduction with Applications
Amos Gilat - 2003
The first chapter describes basic features of the program and shows how to use it in simple arithmetic operations with scalars. The next two chapters focus on the topic of arrays (the basis of MATLAB), while the remaining text covers a wide range of other applications. Computer screens, tutorials, samples, and homework questions in math, science, and engineering, provide the student with the practical hands-on experience needed for total proficiency.
Nexus: Small Worlds and the Groundbreaking Theory of Networks
Mark Buchanan - 2002
Federal Reserve Bank sneezes the global economy catches cold, read this book," writes John L. Casti (Santa Fe Institute). This "cogent and engaging" (Nature) work presents the fundamental principles of the emerging field of "small-worlds" theory—the idea that a hidden pattern is the key to how networks interact and exchange information, whether that network is the information highway or the firing of neurons in the brain. Mathematicians, physicists, computer scientists, and social scientists are working to decipher this complex organizational system, for it may yield a blueprint of dynamic interactions within our physical as well as social worlds.Highlighting groundbreaking research behind network theory, "Mark Buchanan's graceful, lucid, nontechnical and entertaining prose" (Mark Granovetter) documents the mounting support among various disciplines for the small-worlds idea and demonstrates its practical applications to diverse problems—from the volatile global economy or the Human Genome Project to the spread of infectious disease or ecological damage. Nexus is an exciting introduction to the hidden geometry that weaves our lives so inextricably together.
Mars Direct: Space Exploration, the Red Planet, and the Human Future: A Special from Tarcher/Penguin
Robert Zubrin - 2013
In the coming years, we will make decisions regarding our human spaceflight program that will lead to one of two familiar futures: the open universe of "Star Trek, "where we allow ourselves the opportunity to spread our wings and attempt to flourish as an interplanetary species--or the closed, dystopian, and ultimately self-destructive world of "Soylent Green." If we ever hope to live in the future that is the former scenario, our first stepping stone must be a manned mission to Mars. In this four-part e-special, Dr. Robert Zubrin details the challenges of a manned Earth-to-Mars mission. Challenges which, according to Zubrin, we are technologically more prepared to overcome than the obstacles of the missions to the moon of the sixties and seventies. Dr. Zubrin's relatively simple plan, called Mars Direct, could feasibly have humans on the surface of Mars within a decade. Zubrin also discusses the current predicament of NASA, the promise of privatized space flight from companies like SpaceX, and the larger implication behind the absolute necessity to open the final frontier to humanity--the human race's future as a species that takes the necessary baby steps away from the cradle that is planet Earth or, ultimately, perishes here.
Math Riddles For Smart Kids: Math Riddles and Brain Teasers that Kids and Families will Love
M. Prefontaine - 2017
It is a collection of 150 brain teasing math riddles and puzzles. Their purpose is to make children think and stretch the mind. They are designed to test logic, lateral thinking as well as memory and to engage the brain in seeing patterns and connections between different things and circumstances. They are laid out in three chapters which get more difficult as you go through the book, in the author’s opinion at least. The answers are at the back of the book if all else fails. These are more difficult riddles and are designed to be attempted by children from 10 years onwards, as well as participation from the rest of the family. Tags: Riddles and brain teasers, riddles and trick questions, riddles book, riddles book for kids, riddles for kids, riddles for kids aged 9-12, riddles and puzzles, jokes and riddles, jokes book, jokes book for kids, jokes children, jokes for kids, jokes kids, puzzle book
Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists
Philipp K. Janert - 2010
With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora
A Caregiver's Guide to Lewy Body Dementia
Helen Buell Whitworth - 2010
Sadly Lewy Body Dementia is not well-known or understood and is often confused with Alzheimer's Disease. After the death of Jim Whitworth's first wife from Lewy Body Dementia he co-founded the Lewy Body Dementia Association in 2003, with the aim of educating caregivers, family members, and friends of people living with the disease. A Caregiver's Guide to Lewy Body Dementia is a guide and resource to Lewy Body Dementia. It is written in everyday language and filled with personal examples that connect to the readers own experiences. The book provides an accurate, detailed view of the disease in easy to understand terms. The book includes quick fact and quick tip boxes that summarize facts and caregiving tips for easy reference, a comprehensive resource guide including respite care, nursing homes, and neurologists, and a glossary of terms and acronyms related to Lewy Body Dementia. A Caregiver's Guide to Lewy Body Dementia is the first book to present a thorough picture of Lewy Body Dementia in an easy-to-read format. It is the ideal resource for caregivers, family members, and friends of individuals living with the disease seeking to understand Lewy Body Dementia.
Think Complexity: Complexity Science and Computational Modeling
Allen B. Downey - 2009
Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations.You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise.Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tablesStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet starter code and solutions to help you re-implement and extend original experiments in complexityExplore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topicsExamine case studies of complex systems submitted by students and readers