Book picks similar to
Jewels of Stringology: Text Algorithms by Maxime Crochemore
computer-science
algorithms
stringology
computers-technical
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
Michael G. Milton - 2009
If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
A Software Engineer Learns HTML5, JavaScript and jQuery
Dane Cameron - 2013
Due to their monopoly position in web browsers, and the fact web browsers have spread from PCs to phones, tablets and TVs; their status will continue to grow and grow. Despite their success, many software engineers are apprehensive about JavaScript and HTML. This apprehensiveness is not completely unfounded; both JavaScript and HTML were rushed in their early years, and driven by commercial rather than engineering interests. As a result, many dubious features crept into these languages. Due to backwards compatibility concerns, most of these features still remain. In addition, many software engineers have used these languages without ever learning them. JavaScript and HTML have low barriers to entry, and this, along with their similarity to other languages, led many software engineers to conclude that there really was nothing much to learn. If you have not used JavaScript and HTML for a number of years, or if you are a programmer or software engineer using other languages, you may be surprised at what they now offer. Browser based web applications are now capable of matching or exceeding the sophistication and scale of traditional desktop applications. In order to create complex web applications however, it is essential to learn these languages. This book takes the point of view that once you have a strong grasp of the fundamentals, the details will take care of themselves. It will not present you with long lists of APIs, or intricate details of every attribute, these can be found in reference manuals. It will focus on the details of each language that are fundamental to understanding how they work. This book will guide you through the process of developing a web application using HTML5, Javascript, jQuery and CSS. It contains the following content: 1. An introduction to the HTML5 markup language, and how it differs from HTML4 and XHTML. 2. An introduction to JavaScript, including an in-depth look at its use of objects and functions, along with the design patterns that support the development of robust web applications. 3. An introduction to jQuery selection, traversal, manipulation and events. 4. An in-depth look at the Web storage and IndexedDB APIs for client side data storage. 5. A guide to implementing offline web applications with the Application Cache API. 6. An introduction to the ways JavaScript can interact with the users file-system using the FileReader API. 7. The use of Web Workers in a web application to execute algorithms on background threads. 8. An introduction to AJAX, and the jQuery API supporting AJAX. 9. An introduction to Server Sent Events and Web Sockets. All subjects are introduced in the context of a sample web application. This book is intended for anyone with at least a superficial knowledge of HTML and programming.
Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos
Seth Lloyd - 2006
This wonderfully accessible book illuminates the professional and personal paths that led him to this remarkable conclusion.All interactions between particles in the universe, Lloyd explains, convey not only energy but also information—in other words, particles not only collide, they compute. And what is the entire universe computing, ultimately? “Its own dynamical evolution,” he says. “As the computation proceeds, reality unfolds.”To elucidate his theory, Lloyd examines the history of the cosmos, posing questions that in other hands might seem unfathomably complex: How much information is there in the universe? What information existed at the moment of the Big Bang and what happened to it? How do quantum mechanics and chaos theory interact to create our world? Could we attempt to re-create it on a giant quantum computer? Programming the Universe presents an original and compelling vision of reality, revealing our world in an entirely new light.
Node.js in Action
Mike Cantelon - 2011
You'll start by learning how to set up your Node development environment, including loading the community-created extensions. Next, you'll run several simple demonstration programs where you'll learn the basics of a few common types of Node applications. Then you'll dive into asynchronous programming, a model Node leverages to lessen application bottlenecks.About this BookJavaScript on the server? You bet. Node.js is a JavaScript server capable of supporting scalable, high-performance web applications. Using asynchronous I/O, the server can do more than one thing at a time, a key requirement for real-time apps like chat, games, and live statistics. And since it's JavaScript, you use the same language end to end.Node.js in Action shows you how to build production-quality applications. Clear introductions of key concepts and example-by-example coverage take you from setup to deployment. You'll dive into asynchronous programming, data storage, and output templating, and interact with the filesystem to create non-HTTP applications like TCP/IP servers and command-line tools. Perfect for a web developer transitioning from Rails, Django, or PHP. Requires basic knowledge of JavaScript. No prior experience with Node.js needed.Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.What's InsideSet up Node and extensions Grok asynchronous programming and the event loop Examples including microblogging, IM, games, and moreAbout the AuthorsAs skilled practitioners, expert teachers and trainers, and contributors to the core framework, authors Mike Cantelon, Marc Harter, T.J. Holowaychuk, and Nathan Rajlich represent the best of the Node.js development community.Table of ContentsPART 1 NODE FUNDAMENTALS Welcome to Node.js Building a multiroom chat application Node programming fundamentals PART 2 WEB APPLICATION DEVELOPMENT WITH NODE Building Node web applications Storing Node application data Connect Connect's built-in middleware Express Advanced Express Testing Node applications Web application templating PART 3 GOING FURTHER WITH NODE Deploying Node applications and maintaining uptime Beyond web servers The Node ecosystem
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Beautiful Code: Leading Programmers Explain How They Think
Andy OramLincoln Stein - 2007
You will be able to look over the shoulder of major coding and design experts to see problems through their eyes.This is not simply another design patterns book, or another software engineering treatise on the right and wrong way to do things. The authors think aloud as they work through their project's architecture, the tradeoffs made in its construction, and when it was important to break rules. Beautiful Code is an opportunity for master coders to tell their story. All author royalties will be donated to Amnesty International.
Introducing Python: Modern Computing in Simple Packages
Bill Lubanovic - 2013
In addition to giving a strong foundation in the language itself, Lubanovic shows how to use it for a range of applications in business, science, and the arts, drawing on the rich collection of open source packages developed by Python fans.It's impressive how many commercial and production-critical programs are written now in Python. Developed to be easy to read and maintain, it has proven a boon to anyone who wants applications that are quick to write but robust and able to remain in production for the long haul.This book focuses on the current version of Python, 3.x, while including sidebars about important differences with 2.x for readers who may have to deal with programs in that version.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
C for Dummies
Dan Gookin - 1997
Actually, it's computer sense--C programming. After digesting C For Dummies, 2nd Edition, you'll understand it. C programs are fast, concise and versatile. They let you boss your computer around for a change. So turn on your computer, get a free compiler and editor (the book tells you where), pull up a chair, and get going. You won't have to go far (page 13) to find your first program example. You'll do short, totally manageable, hands-on exercises to help you make sense of:All 32 keywords in the C language (that's right--just 32 words) The functions--several dozen of them Terms like printf(), scanf(), gets (), and puts () String variables, numeric variables, and constants Looping and implementation Floating-point values In case those terms are almost as intimidating as the idea of programming, be reassured that C For Dummies was written by Dan Gookin, bestselling author of DOS For Dummies, the book that started the whole library. So instead of using expletives and getting headaches, you'll be using newly acquired skills and getting occasional chuckles as you discover how to:Design and develop programs Add comments (like post-it-notes to yourself) as you go Link code to create executable programs Debug and deploy your programs Use lint, a common tool to examine and optimize your code A helpful, tear-out cheat sheet is a quick reference for comparison symbols, conversion characters, mathematical doodads, C numeric data types, and more. C For Dummies takes the mystery out of programming and gets you into it quickly and painlessly.
Professional PHP Programming
Sascha Schumann - 1999
PHP is a server-side, HTML-embedded scripting language. It is an open source technology, rapidly gaining popularity as a scripting language for people running dynamic websites. One of its major attractions over Perl, JavaScript and other scripting languages is that PHP has a built-in database integration layer and seamless IP connectivity, with LDAP and TCP as well as the IMAP mail interface. Features; Real world, practical experience and techniques From installation and configuration of the PHP engine to advanced dynamic application design Definitive coverage of core PHP language and database addressing: MySQL is covered in depth. Practical e-commerce and business scripting including database application development, together with PHP and XML applications. LDAP connectivity addressed.
Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive Software and Hardware Problems
David J. Agans - 2002
Written in a frank but engaging style, Debuggingprovides simple, foolproof principles guaranteed to help find any bug quickly. This book makes those shelves of application-specific debugging books (on C++, Perl, Java, etc.) obsolete. It changes the way readers think about debugging, making those pesky problems suddenly much easier to find and fix. Illustrating the rules with real-life bug-detection war stories, the book shows readers how to: * Understand the system: how perceiving the ""roadmap"" can hasten your journey * Quit thinking and look: when hands-on investigation can’t be avoided * Isolate critical factors: why changing one element at a time can be an essential tool * Keep an audit trail: how keeping a record of the debugging process can win the day
Software Tools
Brian W. Kernighan - 1976
The programs contained in the book are not artificial, but are actual programs ae tools which have proved valuable in the production of other programs.Modern programming techniques such as structured programming and top-down design are emphasized and applied to every program. The programs are presented in a structured language called Ratfor ("Rational Fortran") which can be easily understood by anyone familiar with Fortran or PL/I, Algol, PASCAL, or similar languages. (Ratfor translates readily into Fortran or PL/I. One of the tools presented is a preprocessor to translate Ratfor into Fortran). All of the programs are complete and have been tested directly from the text. The programs are available in machine-readable form from Addison-Wesley.Software Tools is ideal for use in a "software engineering" course, for a second course in programming, or as a supplement in any programming course. All programmers, professional and student, will find the book invaluable as a source of proven, useful programs for reading and study. Numerous exercises are provided to test comprehension and to extend the concepts presented in the text.
A Common-Sense Guide to Data Structures and Algorithms: Level Up Your Core Programming Skills
Jay Wengrow - 2017
If you have received one of these copies, please contact the Pragmatic Bookshelf at support@pragprog.com, and we will replace it for you.Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today's web and mobile apps. This book takes a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code. Graphics and examples make these computer science concepts understandable and relevant. You can use these techniques with any language; examples in the book are in JavaScript, Python, and Ruby.Use Big O notation, the primary tool for evaluating algorithms, to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You'll even encounter a single keyword that can give your code a turbo boost. Jay Wengrow brings to this book the key teaching practices he developed as a web development bootcamp founder and educator.Use these techniques today to make your code faster and more scalable.