The Psychology of Invention in the Mathematical Field


Jacques Hadamard - 1945
    Role of the unconscious in invention; the medium of ideas — do they come to mind in words? in pictures? in mathematical terms? Much more. "It is essential for the mathematician, and the layman will find it good reading." — Library Journal.

In the Wonderland of Numbers: Maths and Your Child


Shakuntala Devi - 2006
    The specialities of each individual number, from zero to nine, and the little mathematical tricks as shown by Shakuntala Devi, all combine to make the reader learn to befriend numbers and excel at maths.

Geometry, Relativity and the Fourth Dimension


Rudolf Rucker - 1977
    A remarkable pictorial discussion of the curved space-time we call home, it achieves even greater impact through the use of 141 excellent illustrations. This is the first sustained visual account of many important topics in relativity theory that up till now have only been treated separately.Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to explain our three-dimensional world in terms of the fourth dimension. Following this adventure into the fourth dimension, the author discusses non-Euclidean geometry, curved space, time as a higher dimension, special relativity, time travel, and the shape of space-time. The mathematics is sound throughout, but the casual reader may skip those few sections that seem too purely mathematical and still follow the line of argument. Readable and interesting in itself, the annotated bibliography is a valuable guide to further study.Professor Rucker teaches mathematics at the State University of New York in Geneseo. Students and laymen will find his discussion to be unusually stimulating. Experienced mathematicians and physicists will find a great deal of original material here and many unexpected novelties. Annotated bibliography. 44 problems.

Things to Make and Do in the Fourth Dimension


Matt Parker - 2014
    This book can be cut, drawn in, folded into shapes and will even take you to the fourth dimension. So join stand-up mathematician Matt Parker on a journey through narcissistic numbers, optimal dating algorithms, at least two different kinds of infinity and more.

Mathematics: The Loss of Certainty


Morris Kline - 1980
    Mathematics: The Loss of Certainty refutes that myth.

The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions


Shing-Tung Yau - 2010
    According to theorists, the missing six are curled up in bizarre structures known as Calabi-Yau manifolds. In The Shape of Inner Space, Shing-Tung Yau, the man who mathematically proved that these manifolds exist, argues that not only is geometry fundamental to string theory, it is also fundamental to the very nature of our universe.Time and again, where Yau has gone, physics has followed. Now for the first time, readers will follow Yau’s penetrating thinking on where we’ve been, and where mathematics will take us next. A fascinating exploration of a world we are only just beginning to grasp, The Shape of Inner Space will change the way we consider the universe on both its grandest and smallest scales.

Mathematical Analysis


Tom M. Apostol - 1957
    It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.

Elementary Number Theory


David M. Burton - 1976
    It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.

Whom the Gods Love: The Story of Evariste Gaolois (Classics in mathematics education ; v. 7)


Leopold Infeld - 1950
    

The Principles of Mathematics


Bertrand Russell - 1903
    Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.

Principia Mathematica to '56


Alfred North Whitehead - 1913
    Its aim is to deduce all the fundamental propositions of logic and mathematics from a small number of logical premises and primitive ideas, establishing that mathematics is a development of logic. This abridged text of Volume I contains the material that is most relevant to an introductory study of logic and the philosophy of mathematics (more advanced students will of course wish to refer to the complete edition). It contains the whole of the preliminary sections (which present the authors' justification of the philosophical standpoint adopted at the outset of their work); the whole of Part I (in which the logical properties of propositions, propositional functions, classes and relations are established); section A of Part II (dealing with unit classes and couples); and Appendices A and C (which give further developments of the argument on the theory of deduction and truth functions).

Elementary Analysis: The Theory of Calculus


Kenneth A. Ross - 1980
    It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

The Book of Numbers


John H. Conway - 1995
    Whether it is a visualization of the Catalan numbers or an explanation of how the Fibonacci numbers occur in nature, there is something in here to delight everyone. The diagrams and pictures, many of which are in color, make this book particularly appealing and fun. A few of the discussions may be confusing to those who are not adept mathematicians; those who are may be irked that certain facts are mentioned without an accompanying proof. Nonetheless, The Book of Numbers will succeed in infecting any reader with an enthusiasm for numbers.

Single Variable Calculus


James Stewart - 1991
    Stewart's Calculus is successful throughout the world because he explains the material in a way that makes sense to a wide variety of readers. His explanations make ideas come alive, and his problems challenge, to reveal the beauty of calculus. Stewart's examples stand out because they are not just models for problem solving or a means of demonstrating techniques--they also encourage readers to develp an analytic view of the subject. This edition includes new problems, examples, and projects.