Time Travel and Warp Drives: A Scientific Guide to Shortcuts through Time and Space


Allen Everett - 2011
    Sci-fi makes it look so easy. Receive a distress call from Alpha Centauri? No problem: punch the warp drive and you're there in minutes. Facing a catastrophe that can't be averted? Just pop back in the timestream and stop it before it starts. But for those of us not lucky enough to live in a science-fictional universe, are these ideas merely flights of fancy—or could it really be possible to travel through time or take shortcuts between stars? Cutting-edge physics may not be able to answer those questions yet, but it does offer up some tantalizing possibilities. In Time Travel and Warp Drives, Allen Everett and Thomas A. Roman take readers on a clear, concise tour of our current understanding of the nature of time and space—and whether or not we might be able to bend them to our will. Using no math beyond high school algebra, the authors lay out an approachable explanation of Einstein's special relativity, then move through the fundamental differences between traveling forward and backward in time and the surprising theoretical connection between going back in time and traveling faster than the speed of light. They survey a variety of possible time machines and warp drives, including wormholes and warp bubbles, and, in a dizzyingly creative chapter, imagine the paradoxes that could plague a world where time travel was possible—killing your own grandfather is only one of them! Written with a light touch and an irrepressible love of the fun of sci-fi scenarios—but firmly rooted in the most up-to-date science, Time Travel and Warp Drives will be a delightful discovery for any science buff or armchair chrononaut.

The Heart of Mathematics: An Invitation to Effective Thinking


Edward B. Burger - 1999
    In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.

Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus


Michael Spivak - 1965
    The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

Fearful Symmetry: The Search for Beauty in Modern Physics


A. Zee - 1986
    A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how today's theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, the book describes the majestic sweep and accomplishments of twentieth-century physics. In the end, we stand in awe before the grand vision of modern physics--one of the greatest chapters in the intellectual history of humankind.

Alpha and Omega: The Search for the Beginning and End of the Universe


Charles Seife - 2003
    Today we are at the brink of discoveries that should soon reveal the deepest secrets of the universe.Alpha and Omega is a dispatch from the front lines of the cosmological revolution that is being waged at observatories and laboratories around the world-in Europe, in America, and even in Antarctica--where scientists are actually peering into both the cradle of the universe and its grave. Scientists--including galaxy hunters and microwave eavesdroppers, gravity theorists and atom smashers, all of whom are on the trail of dark matter, dark energy, and the growing inhabitants of the particle zoo-now know how the universe will end and are on the brink of understanding its beginning. Their findings will be among the greatest triumphs of science, even towering above the deciphering of the human genome.This is the book you need to help understand the frequent front-page headlines heralding dramatic cosmological discoveries. It makes cutting-edge science both crystal clear and wonderfully exciting.

Introduction to Modern Optics


Grant R. Fowles - 1968
    The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and multilayer-film theory. Diffraction and holography are the subjects of Chapter 5, and the propagation of light in material media (including crystal and nonlinear optics) are central to Chapter 6. Chapters 7 and 8 introduce the quantum theory of light and elementary optical spectra, and Chapter 9 explores the theory of light amplification and lasers. Chapter 10 briefly outlines ray optics in order to introduce students to the matrix method for treating optical systems and to apply the ray matrix to the study of laser resonators.Many applications of the laser to the study of optics are integrated throughout the text. The author assumes students have had an intermediate course in electricity and magnetism and some advanced mathematics beyond calculus. For classroom use, a list of problems is included at the end of each chapter, with selected answers at the end of the book.

Time: A Traveler's Guide


Clifford A. Pickover - 1998
    Clarke thinks big, but Cliff Pickover outdoes them both. In his newest book, Cliff Pickover outdoes even himself, probing a mystery that has baffled mystics, philosophers, and scientists throughout history--What is the nature of time?In Time: A Traveler's Guide, Pickover takes readers to the forefront of science as he illuminates the most mysterious phenomenon in the universe--time itself. Is time travel possible? Is time real? Does it flow in one direction only? Does it have a beginning and an end? What is eternity? Pickover's book offers a stimulating blend of Chopin, philosophy, Einstein, and modern physics, spiced with diverting side-trips to such topics as the history of clocks, the nature of free will, and the reason gold glitters. Numerous diagrams ensure readers will have no trouble following along. By the time we finish this book, we understand a wide variety of scientific concepts pertaining to time. And most important, we will understand that time travel is, indeed, possible.

Algebraic Topology


Allen Hatcher - 2001
    This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.

How Many Socks Make a Pair?: Surprisingly Interesting Everyday Maths


Rob Eastaway - 2008
    Using playing cards, a newspaper, the back of an envelope, a Sudoku, some pennies and of course a pair of socks, Rob Eastaway shows how maths can demonstrate its secret beauties in even the most mundane of everyday objects. Among the many fascinating curiosities in these pages, you will discover the strange link between limericks and rabbits, an apparently 'fair' coin game where the odds are massively in your favour, why tourist boards can't agree on where the centre of Britain is, and how simple paper folding can lead to a Jurassic Park monster. With plenty of ideas you'll want to test out for yourself, this engaging and refreshing look at mathematics is for everyone.

Space-time and beyond : toward an explanation of the unexplainable


Bob Toben - 1975
    Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary

Symmetry: The Ordering Principle


David G. Wade - 2006
    In this little book Welsh writer and artist David Wade paints a picture of one of the most elusive and pervasive concepts known to man.

The Large Scale Structure of Space-Time


Stephen Hawking - 1973
    These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.

Computer Science Illuminated


Nell B. Dale - 2002
    Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.

What Is Relativity?: An Intuitive Introduction to Einstein's Ideas, and Why They Matter


Jeffrey O. Bennett - 2014
    Yet as bestselling author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in hand, Bennett begins an entertaining introduction to Einstein's theories, describing the amazing phenomena readers would actually experience if they took a trip through a black hole.The theory of relativity also gives us the cosmic speed limit of the speed of light, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: e = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe, and it is not "just a theory: " every major prediction of relativity has been tested to exquisite precision and its practical applications include the Global Positioning System (GPS). Bennett proves anyone can understand the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important not only to science but also to the way we view ourselves as human beings.

Pendulum: Leon Foucault and the Triumph of Science


Amir D. Aczel - 2000
    By tracking a pendulum's path as it swung repeatedly across the interior of the large ceremonial hall, Foucault offered the first definitive proof -- before an audience that comprised the cream of Parisian society, including the future emperor, Napoleon III -- that the earth revolves on its axis.Through careful, primary research, world-renowned author Amir Aczel has revealed the life of a gifted physicist who had almost no formal education in science, and yet managed to succeed despite the adversity he suffered at the hands of his peers. The range and breadth of Foucault's discoveries is astonishing: He gave us the modern electric compass, devised an electric microscope, invented photographic technology, and made remarkable deductions about color theory, heat waves, and the speed of light. Yet until now so little has been known about his life.Richly detailed and evocative, Pendulum tells of the illustrious period in France during the Second Empire; of Foucault's relationship with Napoleon III, a colorful character in his own right; and -- most notably -- of the crucial triumph of science over religion.Dr. Aczel has crafted a fascinating narrative based on the life of this most astonishing and largely unrecognized scientist, whose findings answered many age-old scientific questions and posed new ones that are still relevant today.