Book picks similar to
Data Structures and Algorithm Analysis in C by Mark Allen Weiss
computer-science
reference
programming
algorithms
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data
Introduction to the Design and Analysis of Algorithms
Anany V. Levitin - 2002
KEY TOPICS: Written in a reader-friendly style, the book encourages broad problem-solving skills while thoroughly covering the material required for introductory algorithms. The author emphasizes conceptual understanding before the introduction of the formal treatment of each technique. Popular puzzles are used to motivate readers' interest and strengthen their skills in algorithmic problem solving. Other enhancement features include chapter summaries, hints to the exercises, and a solution manual. MARKET: For those interested in learning more about algorithms.
The Art of SQL
Stephane Faroult - 2006
Database performance has become a major headache, and most IT departments believe that developers should provide simple SQL code to solve immediate problems and let DBAs tune any bad SQL later.In The Art of SQL, author and SQL expert Stephane Faroult argues that this safe approach only leads to disaster. His insightful book, named after Art of War by Sun Tzu, contends that writing quick inefficient code is sweeping the dirt under the rug. SQL code may run for 5 to 10 years, surviving several major releases of the database management system and on several generations of hardware. The code must be fast and sound from the start, and that requires a firm understanding of SQL and relational theory.The Art of SQL offers best practices that teach experienced SQL users to focus on strategy rather than specifics. Faroult's approach takes a page from Sun Tzu's classic treatise by viewing database design as a military campaign. You need knowledge, skills, and talent. Talent can't be taught, but every strategist from Sun Tzu to modern-day generals believed that it can be nurtured through the experience of others. They passed on their experience acquired in the field through basic principles that served as guiding stars amid the sound and fury of battle. This is what Faroult does with SQL.Like a successful battle plan, good architectural choices are based on contingencies. What if the volume of this or that table increases unexpectedly? What if, following a merger, the number of users doubles? What if you want to keep several years of data online? Faroult's way of looking at SQL performance may be unconventional and unique, but he's deadly serious about writing good SQL and using SQL well. The Art of SQL is not a cookbook, listing problems and giving recipes. The aim is to get you-and your manager-to raise good questions.
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Head First Software Development
Dan Pilone - 2007
Instead of surrendering to these common problems, let Head First Software Development guide you through the best practices of software development. Before you know it, those failed projects will be a thing of the past. With its unique visually rich format, this book pulls together the hard lessons learned by expert software developers over the years. You'll gain essential information about each step of the software development lifecycle -- requirements, design, coding, testing, implementing, and maintenance -- and understand why and how different development processes work. This book is for you if you are:Tired of your customers assuming you're psychic. You'll learn not only how to get good requirements, but how to make sure you're always building the software that customers want (even when they're not sure themselves) Wondering when the other 15 programmers you need to get your project done on time are going to show up. You'll learn how some very simple scheduling and prioritizing will revolutionize your success rate in developing software. Confused about being rational, agile, or a tester. You'll learn not only about the various development methodologies out there, but how to choose a solution that's right for your project. Confused because the way you ran your last project worked so well, but failed miserably this time around. You'll learn how to tackle each project individually, combine lessons you've learned on previous projects with cutting-edge development techniques, and end up with great software on every project.Head First Software Development is here to help you learn in a way that your brain likes... and you'll have a blast along the way. Why pick up hundreds of boring books on the philosophy of this approach or the formal techniques required for that one? Stick with Head First Software Development, and your projects will succeed like never before. Go on, get started... you'll learn and have fun. We promise.
Information Dashboard Design: The Effective Visual Communication of Data
Stephen Few - 2006
Although dashboards are potentially powerful, this potential is rarely realized. The greatest display technology in the world won't solve this if you fail to use effective visual design. And if a dashboard fails to tell you precisely what you need to know in an instant, you'll never use it, even if it's filled with cute gauges, meters, and traffic lights. Don't let your investment in dashboard technology go to waste.This book will teach you the visual design skills you need to create dashboards that communicate clearly, rapidly, and compellingly. Information Dashboard Design will explain how to:Avoid the thirteen mistakes common to dashboard design Provide viewers with the information they need quickly and clearly Apply what we now know about visual perception to the visual presentation of information Minimize distractions, cliches, and unnecessary embellishments that create confusion Organize business information to support meaning and usability Create an aesthetically pleasing viewing experience Maintain consistency of design to provide accurate interpretation Optimize the power of dashboard technology by pairing it with visual effectiveness Stephen Few has over 20 years of experience as an IT innovator, consultant, and educator. As Principal of the consultancy Perceptual Edge, Stephen focuses on data visualization for analyzing and communicating quantitative business information. He provides consulting and training services, speaks frequently at conferences, and teaches in the MBA program at the University of California in Berkeley. He is also the author of Show Me the Numbers: Designing Tables and Graphs to Enlighten. Visit his website at www.perceptualedge.com.
Storytelling with Data: A Data Visualization Guide for Business Professionals
Cole Nussbaumer Knaflic - 2015
You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!
C++ Coding Standards: 101 Rules, Guidelines, and Best Practices
Herb Sutter - 2004
This happens automatically when following agood, simple set of guidelines.*They improve development speed, because the programmer doesn't need toalways make decisions starting from first principles.*They enhance teamwork by eliminating needless debates on inconsequentialissues and by making it easy for teammates to read and maintain each other'scode.The coding standards introduced by this book are a collection of guidelines forwriting high-quality C++ code.***They are the distilled conclusions of a rich collective experience of the C++community. Until now, this body of knowledge has been available only asfolklore or spread in bits and pieces throughout books.
The Rails 3 Way
Obie Fernandez - 2010
"The Rails(TM) 3 Way"is the only comprehensive, authoritative guide to delivering production-quality code with Rails 3. Pioneering Rails expert Obie Fernandez and a team of leading experts illuminate the entire Rails 3 API, along with the idioms, design approaches, and libraries that make developing applications with Rails so powerful. Drawing on their unsurpassed experience and track record, they address the real challenges development teams face, showing how to use Rails 3 to maximize your productivity. Using numerous detailed code examples, the author systematically covers Rails 3 key capabilities and subsystems, making this book a reference that you will turn to again and again. He presents advanced Rails programming techniques that have been proven effective in day-to-day usage on dozens of production Rails systems and offers important insights into behavior-driven development and production considerations such as scalability. Dive deep into the Rails 3 codebase and discover why Rails is designed the way it is--and how to make it do what you want it to do.This book will help youLearn what's new in Rails 3 Increase your productivity as a web application developer Realize the overall joy in programming with Rails Leverage Rails' powerful capabilities for building REST-compliant APIs Drive implementation and protect long-term maintainability using RSpec Design and manipulate your domain layer using Active Record Understand and program complex program flows using Action Controller Master sophisticated URL routing concepts Use Ajax techniques via Rails 3 support for unobtrusive JavaScript Learn to extend Rails with popular gems and plugins, and how to write your own Extend Rails with the best third-party plug-ins and write your own Integrate email services into your applications with Action Mailer Improve application responsiveness with background processing Create your own non-Active Record domain classes using Active Model Master Rails' utility classes and extensions in Active Support
Programming in Haskell
Graham Hutton - 2006
This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.
Common LISP: A Gentle Introduction to Symbolic Computation
David S. Touretzky - 1989
A LISP "toolkit" in each chapter explains how to use Common LISP programming and debugging tools such as DESCRIBE, INSPECT, TRACE and STEP.
Algorithms in a Nutshell
George T. Heineman - 2008
Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.
The C Programming Language
Brian W. Kernighan - 1978
It is the definitive reference guide, now in a second edition. Although the first edition was written in 1978, it continues to be a worldwide best-seller. This second edition brings the classic original up to date to include the ANSI standard. From the Preface: We have tried to retain the brevity of the first edition. C is not a big language, and it is not well served by a big book. We have improved the exposition of critical features, such as pointers, that are central to C programming. We have refined the original examples, and have added new examples in several chapters. For instance, the treatment of complicated declarations is augmented by programs that convert declarations into words and vice versa. As before, all examples have been tested directly from the text, which is in machine-readable form. As we said in the first preface to the first edition, C "wears well as one's experience with it grows." With a decade more experience, we still feel that way. We hope that this book will help you to learn C and use it well.
Head First Python
Paul Barry - 2010
You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you.We think your time is too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Python uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Bayesian Data Analysis
Andrew Gelman - 1995
Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
