Automate This: How Algorithms Came to Rule Our World


Christopher Steiner - 2012
    It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What hap­pens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others?  Who knows—maybe there’s a bot learning to do your job this minute.

Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium Proprocessor, Pentium II, III, 4


Barry B. Brey - 1991
    This text provides a comprehensive view of programming and interfacing of the Intel family of Microprocessors from the 8088 through the latest Pentium 4 microprocessor. Organized in an orderly and manageable format, it offers over 200 programming examples using the Microsoft Macro Assembler program, and provides a thorough description of each Intel family members, memory systems, and various I/O systems.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Peter Norton's Introduction to Computers


Peter Norton - 1994
    It includes three entirely new chapters on the Internet, computer graphics, and multimedia. Thorough yet flexible, Introduction to Computers is appropriate for a full-semester course -- with or without a hands-on lab. The text is available with a student CD-ROM that contains interactive multimedia materials for each chapter. Also available are an Electronic Study Guide on CD-ROM, HyperGraphics package, and an Instructor's Productivity Center on CD-ROM.

C# 4.0 in a Nutshell


Joseph Albahari - 2010
    It is a book I recommend." --Scott Guthrie, Corporate Vice President, .NET Developer Platform, Microsoft Corporation "A must-read for a concise but thorough examination of the parallel programming features in the .NET Framework 4." --Stephen Toub, Parallel Computing Platform Program Manager, Microsoft "This wonderful book is a great reference for developers of all levels." -- Chris Burrows, C# Compiler Team, Microsoft When you have questions about how to use C# 4.0 or the .NET CLR, this highly acclaimed bestseller has precisely the answers you need. Uniquely organized around concepts and use cases, this fourth edition includes in-depth coverage of new C# topics such as parallel programming, code contracts, dynamic programming, security, and COM interoperability. You'll also find updated information on LINQ, including examples that work with both LINQ to SQL and Entity Framework. This book has all the essential details to keep you on track with C# 4.0. Get up to speed on C# language basics, including syntax, types, and variables Explore advanced topics such as unsafe code and preprocessor directives Learn C# 4.0 features such as dynamic binding, type parameter variance, and optional and named parameters Work with .NET 4's rich set of features for parallel programming, code contracts, and the code security model Learn .NET topics, including XML, collections, I/O and networking, memory management, reflection, attributes, security, and native interoperability

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Old Friend of Murder (A Lacy Steele Mystery Book 13)


Vanessa Gray Bartal - 2020
    

Engineering Long-Lasting Software


Armando Fox - 2012
    NOTE: this Alpha Edition is missing some chapters and may contain errors. See http://saasbook.info for details.

Python Tricks: A Buffet of Awesome Python Features


Dan Bader - 2017
    Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today. Who Should Read This Book: If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review. If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2. If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista. If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge. What Python Developers Say About The Book: "I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

The New Turing Omnibus: 66 Excursions In Computer Science


A.K. Dewdney - 1989
    K. Dewdney's The Turing Omnibus.Updated and expanded, The Turing Omnibus offers 66 concise, brilliantly written articles on the major points of interest in computer science theory, technology, and applications. New for this tour: updated information on algorithms, detecting primes, noncomputable functions, and self-replicating computers--plus completely new sections on the Mandelbrot set, genetic algorithms, the Newton-Raphson Method, neural networks that learn, DOS systems for personal computers, and computer viruses.Contents:1 Algorithms 2 Finite Automata 3 Systems of Logic 4 Simulation 5 Godel's Theorem 6 Game Trees 7 The Chomsky Hierarchy 8 Random Numbers 9 Mathematical Research 10 Program Correctness 11 Search Trees 12 Error-Corecting Codes 13 Boolean Logic 14 Regular Languages 15 Time and Space Complexity 16 Genetic Algorithms 17 The Random Access Machine 18 Spline Curves 19 Computer Vision 20 Karnaugh Maps 21 The Newton-Raphson Method 22 Minimum Spanning Trees 23 Generative Grammars 24 Recursion 25 Fast Multiplication 26 Nondeterminism 27 Perceptrons 28 Encoders and Multiplexers 29 CAT Scanning 30 The Partition Problem 31 Turing Machines 32 The Fast Fourier Transform 33 Analog Computing 34 Satisfiability 35 Sequential Sorting 36 Neural Networks That Learn 37 Public Key Cryptography 38 Sequential Cirucits 39 Noncomputerable Functions 40 Heaps and Merges 41 NP-Completeness 42 Number Systems for Computing 43 Storage by Hashing 44 Cellular Automata 45 Cook's Theorem 46 Self-Replicating Computers 47 Storing Images 48 The SCRAM 49 Shannon's Theory 50 Detecting Primes 51 Universal Turing Machines 52 Text Compression 53 Disk Operating Systems 54 NP-Complete Problems 55 Iteration and Recursion 56 VLSI Computers 57 Linear Programming 58 Predicate Calculus 59 The Halting Problem 60 Computer Viruses 61 Searching Strings 62 Parallel Computing 63 The Word Problem 64 Logic Programming 65 Relational Data Bases 66 Church's Thesis

Understanding Computation: From Simple Machines to Impossible Programs


Tom Stuart - 2013
    Understanding Computation explains theoretical computer science in a context you’ll recognize, helping you appreciate why these ideas matter and how they can inform your day-to-day programming.Rather than use mathematical notation or an unfamiliar academic programming language like Haskell or Lisp, this book uses Ruby in a reductionist manner to present formal semantics, automata theory, and functional programming with the lambda calculus. It’s ideal for programmers versed in modern languages, with little or no formal training in computer science.* Understand fundamental computing concepts, such as Turing completeness in languages* Discover how programs use dynamic semantics to communicate ideas to machines* Explore what a computer can do when reduced to its bare essentials* Learn how universal Turing machines led to today’s general-purpose computers* Perform complex calculations, using simple languages and cellular automata* Determine which programming language features are essential for computation* Examine how halting and self-referencing make some computing problems unsolvable* Analyze programs by using abstract interpretation and type systems

Two Scoops of Django: Best Practices for Django 1.5


Daniel Roy Greenfeld - 2013
    We'll introduce you to various tips, tricks, patterns, code snippets, and techniques that we've picked up over the years.This book is great for:Beginners who have just finished the Django tutorial.Developers with intermediate knowledge of Django who want to improve their Django projects.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Feynman Lectures On Computation


Richard P. Feynman - 1996
    Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.