Book picks similar to
Data Science in Production: Building Scalable Model Pipelines with Python by Ben Weber
technical
calibre
programming
python
The Past Present and Future of JavaScript
Axel Rauschmayer - 2012
Now, hopes and expectations for JavaScript’s future are considerable.In this insightful report, Dr. Axel Rauschmayer explains how the combination of several technologies and opportunities in the past 15 years turned JavaScript’s fortunes. With that as a backdrop, he provides a detailed look at proposed new features and fixes in the next version, ECMAScript.next, and then presents his own JavaScript wish list—such as an integrated IDE.
NSHipster: Obscure Topics in Cocoa & Objective C
Mattt Thompson - 2013
In cultivating a deep understanding and appreciation of Objective-C, its frameworks and ecosystem, one is able to create apps that delight and inspire users. Combining articles from NSHipster.com with new essays, this book is the essential guide for modern iOS and Mac OS X developers.
How to Count (Programming for Mere Mortals, #1)
Steven Frank - 2011
unsigned numbers- Floating point and fixed point arithmeticThis short, easily understood book will quickly get you thinking like a programmer.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Star Schema the Complete Reference
Christopher Adamson - 2010
Star Schema: The Complete Reference offers in-depth coverage of design principles and their underlying rationales. Organized around design concepts and illustrated with detailed examples, this is a step-by-step guidebook for beginners and a comprehensive resource for experts.This all-inclusive volume begins with dimensional design fundamentals and shows how they fit into diverse data warehouse architectures, including those of W.H. Inmon and Ralph Kimball. The book progresses through a series of advanced techniques that help you address real-world complexity, maximize performance, and adapt to the requirements of BI and ETL software products. You are furnished with design tasks and deliverables that can be incorporated into any project, regardless of architecture or methodology.Master the fundamentals of star schema design and slow change processingIdentify situations that call for multiple stars or cubesEnsure compatibility across subject areas as your data warehouse growsAccommodate repeating attributes, recursive hierarchies, and poor data qualitySupport conflicting requirements for historic dataHandle variation within a business process and correlation of disparate activitiesBoost performance using derived schemas and aggregatesLearn when it's appropriate to adjust designs for BI and ETL tools
Beyond the Twelve-Factor App Exploring the DNA of Highly Scalable, Resilient Cloud Applications
Kevin Hoffman - 2016
Cloud computing is rapidly transitioning from a niche technology embraced by startups and tech-forward companies to the foundation upon which enterprise systems build their future. In order to compete in today’s marketplace, organizations large and small are embracing cloud architectures and practices.
Computer Graphics with OpenGL
Donald Hearn - 2003
The text converts all programming code into the C++ language.
Absolute Beginner's Guide to C
Greg Perry - 1993
This bestseller talks to readers at their level, explaining every aspect of how to get started and learn the C language quickly. Readers also find out where to learn more about C. This book includes tear-out reference card of C functions and statements, a hierarchy chart, and other valuable information. It uses special icons, notes, clues, warnings, and rewards to make understanding easier. And the clear and friendly style presumes no programming knowledge.
Machine Learning Yearning
Andrew Ng
But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.
Planning for Big Data
Edd Wilder-James - 2004
From creating new data-driven products through to increasing operational efficiency, big data has the potential to makeyour organization both more competitive and more innovative.As this emerging field transitions from the bleeding edge to enterprise infrastructure, it's vital to understand not only the technologies involved, but the organizational and cultural demands of being data-driven.Written by O'Reilly Radar's experts on big data, this anthology describes:- The broad industry changes heralded by the big data era- What big data is, what it means to your business, and how to start solving data problems- The software that makes up the Hadoop big data stack, and the major enterprise vendors' Hadoop solutions- The landscape of NoSQL databases and their relative merits- How visualization plays an important part in data work
Business Analysis Methodology Book
Emrah Yayici - 2015
A real life case study with sample project documents and diagrams is used to more practically explain these international tools, techniques, and lean principles to a broad range of practitioners, including: - Business analysts, systems analysts, developers and project managers - Entrepreneurs, product owners and product managers - Consultants, UX designers and marketing specialists - C-suite executives, investors and managers of companies of all sizes.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Machine Learning in Action
Peter Harrington - 2011
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Causal Inference in Statistics: A Primer
Judea Pearl - 2016
Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.