Book picks similar to
Differential Equations by Francesco Giacomo Tricomi


engineering
mathematics
physics-math-and-other-science

Problems in Mathematics with Hints and Solutions


V. Govorov - 1996
    Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Fundamentals of Thermodynamics


Richard E. Sonntag - 2002
    

Manufacturing Processes for Engineering Materials


Serope Kalpakjian - 2007
    The book carefully presents the fundamentals of materials processing along with their relevant applications, so that the reader can clearly assess the capabilities, limitations, and potentials of manufacturing processes and their competitive aspects. Using real-world examples and well-wrought graphics, this book covers a multitude of topics, including the mechanical behavior of materials; the structure and manufacturing properties of metals; surfaces, dimensional characteristics, inspection, and quality assurance; metal-casting processes including heat treatment; bulk deformation processes; sheet-metal forming processes; material removal processes; polymers, reinforced plastics, rapid prototyping and rapid tooling; metal powders, ceramics, glasses, composites, and superconductors; joining and fastening processes; microelectronic and micromechanical devices; automation; computer-integrated systems; and product design. For manufacturing engineers, metallurgists, industrial designers, material handlers, product designers, and quality assurance managers.

MATLAB: An Introduction with Applications


Amos Gilat - 2003
    The first chapter describes basic features of the program and shows how to use it in simple arithmetic operations with scalars. The next two chapters focus on the topic of arrays (the basis of MATLAB), while the remaining text covers a wide range of other applications. Computer screens, tutorials, samples, and homework questions in math, science, and engineering, provide the student with the practical hands-on experience needed for total proficiency.

Introductory Circuit Analysis


Robert L. Boylestad - 1968
    Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.

Principles Materials Science Engineering


William F. Smith - 1986
    It provides up to date information on structural properties, the processing of materials and their applications.

God Created the Integers: The Mathematical Breakthroughs That Changed History


Stephen Hawking - 2005
    In this collection of landmark mathematical works, editor Stephen Hawking has assembled the greatest feats humans have ever accomplished using just numbers and their brains.

101 Things I Learned in Engineering School


John Kuprenas - 2013
    Far from a dry, nuts-and-bolts exposition, however, 101 THINGS I LEARNED® IN ENGINEERING SCHOOL probes real-world examples to show how the engineer's way of thinking can-and sometimes cannot-inform our understanding of how things work. Questions from the simple to the profound are illuminated throughout: Why shouldn't soldiers march across a bridge? Why do buildings want to float and cars want to fly? What is the difference between thinking systemically and thinking systematically? How can engineering solutions sympathize with the natural environment? Presented in the familiar, illustrated format of the popular 101 THINGS I LEARNED® series, 101 THINGS I LEARNED® IN ENGINEERING SCHOOL offers an informative resource for students, general readers, and even experienced engineers, who will discover within many provocative new insights into familiar principles.

Differential Equations


Richard Bronson - 2010
    This supplement will cater to the requirements of students by covering all important topics of Laplace transformation, Matrices, Numerical Methods. Further enhanced is its usability by inclusion of chapter end questions in sync with student needs. Table of contents: 1. Basic Concepts 2. An Introduction to Modeling and Qualitative Methods 3. Classification of First-Order Differential Equations 4. Separable First-Order Differential Equations 5. Exact First-order Differential Equations 6. Linear First-Order Differential Equations 7. Applications of First-Order Differential Equations 8. Linear Differential Equations: Theory of Solutions 9. Second-Order Linear Homogeneous Differential Equations with Constant Coefficients 10. nth-Order Linear Homogeneous Differential Equations with Constant Coefficients 11. The Method of Undetermined Coefficients 12. Variation of Parameters 13. Initial-Value Problems for Linear Differential Equations 14. Applications of Second-Order Linear Differential Equations 15. Matrices 16. eAt 17. Reduction of Linear Differential Equations to a System of First-Order Equations 18. Existence and Uniqueness of Solutions 19. Graphical and Numerical Methods for Solving First-Order Differential Equations 20. Further Numerical Methods for Solving First-Order Differential Equations 21. Numerical Methods for Solving Second-Order Differential Equations Via Systems 22. The Laplace Transform 23. Inverse Laplace Transforms 24. Convolutions and the Unit Step Function 25. Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms 26. Solutions of Linear?Systems by Laplace Transforms 27. Solutions of Linear Differential Equations with Constant Coefficients by Matrix Methods 28. Power Series Solutions of Linear Differential Equations with Variable Coefficients 29. Special Functions 30. Series Solutions N

FREE Weights and Measures Study Guide: Conversion of over 1,000 units including Length, Area, Volume, Speed, Force, Energy, Electricity, Viscosity, Temperature, & more


MobileReference - 2007
    You will use it from high school to college and beyond. The full version is absolutely FREE. Features Conversion of over 1,000 units. Metric, English, and US customary systems. Length, Area, Volume, Speed, Force, Energy, Electricity, Viscosity, Temperature, and more. List of powers of 10 prefixes. Explanation of SI writing style. Approximate conversion of units. Clear and concise explanations. Difficult concepts are explained in simple terms. Navigate from Table of Contents or search for words or phrases. Add bookmarks and annotation. Access the guide anytime, anywhere - at home, on the train, in the subway. Use your down time to prepare for an exam. Always have the guide available for a quick reference. Indispensable resource for technical and life science students. The full version is absolutely FREE. FREE updates. Table of Contents Conversion of units: Length: Definition | Conversion Area: Definition | 2-D Formulae | 3-D Formulae | Conversion Volume: Definition | Formulae | Conversion Angle: Definition | Conversion Mass: Definition | Conversion Time: Definition | Conversion Speed: Definition | Conversion Acceleration: Definition | Conversion Force: Definition | Conversion Pressure or mechanical stress: Definition | Conversion Energy, work, or heat: Definition | Conversion Power: Definition | Conversion Angular momentum: Definition | Conversion Electricity: Current | Charge | Resistance | Voltage | Formulae | Conversion Viscosity: Definition | Conversion Information entropy: Definition | Conversion Temperature: Definition | Conversion Approximate conversion of units History: Systems of measurement | History of measurement Metric system (SI): Definition | SI writing style | Powers of 10 prefixes Other Systems: English system | Imperial unit | United States customary units | Comparison of the Imperial and U.S. customary systems

Humble Pi: A Comedy of Maths Errors


Matt Parker - 2019
    Most of the time this math works quietly behind the scenes . . . until it doesn't. All sorts of seemingly innocuous mathematical mistakes can have significant consequences.Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean.Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.

In Pursuit of the Unknown: 17 Equations That Changed the World


Ian Stewart - 2012
    We often overlook the historical link between mathematics and technological advances, says Stewart—but this connection is integral to any complete understanding of human history.Equations are modeled on the patterns we find in the world around us, says Stewart, and it is through equations that we are able to make sense of, and in turn influence, our world. Stewart locates the origins of each equation he presents—from Pythagoras's Theorem to Newton's Law of Gravity to Einstein's Theory of Relativity—within a particular historical moment, elucidating the development of mathematical and philosophical thought necessary for each equation's discovery. None of these equations emerged in a vacuum, Stewart shows; each drew, in some way, on past equations and the thinking of the day. In turn, all of these equations paved the way for major developments in mathematics, science, philosophy, and technology. Without logarithms (invented in the early 17th century by John Napier and improved by Henry Briggs), scientists would not have been able to calculate the movement of the planets, and mathematicians would not have been able to develop fractal geometry. The Wave Equation is one of the most important equations in physics, and is crucial for engineers studying the vibrations in vehicles and the response of buildings to earthquakes. And the equation at the heart of Information Theory, devised by Claude Shannon, is the basis of digital communication today.An approachable and informative guide to the equations upon which nearly every aspect of scientific and mathematical understanding depends, In Pursuit of the Unknown is also a reminder that equations have profoundly influenced our thinking and continue to make possible many of the advances that we take for granted.

Electronic Instrumentation and Measurements


David A. Bell - 1983
    Measurement methods and measurement precision are also covered.

The Einstein Theory of Relativity


Hendrik Antoon Lorentz - 2004
    The books published on the subject are so technical that only a person trained in pure physics and higher mathematics is able to fully understand them. In order to make a popular explanation of this far-reaching theory available, the present book is published.