Learn Python 3 the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code (Zed Shaw's Hard Way Series)


Zed A. Shaw - 2017
    

Working at the Ubuntu Command-Line Prompt


Keir Thomas - 2011
    His books have been read by over 1,000,000 people and are #1 best-sellers. His book Beginning Ubuntu Linux recently entered its sixth edition, and picked-up a Linux Journal award along the way. Thomas is also the author of Ubuntu Kung Fu. * * * * * * * * * * * * * * * * * Get to grips with the Ubuntu command-line with this #1 best-selling and concise guide. "Best buck I've spent yet" — Amazon review.* Readable, accessible and easy to understand;* Learn essential Ubuntu vocational skills, or read just for fun;* Covers Ubuntu commands, syntax, the filesystem, plus advanced techniques;* For ANY version of Linux based on Debian, such as Linux Mint--not just Ubuntu!;* Includes BONUS introduction to Ubuntu chapter, plus a glossary appendix and a guide to reading Linux/Unix documentation.

Microsoft Excel 2013 Power Programming with VBA


John Walkenbach - 2013
    Naturally, that means John Walkenbach returns with a new edition of his bestselling VBA Programming book and covers all the methods and tools you need to know in order to program with Excel. With this comprehensive guide, Mr. Spreadsheet shows you how to maximize your Excel experience using professional spreadsheet application development tips from his own personal bookshelf.Featuring a complete introduction to Visual Basic for Applications and fully updated for the latest features of Excel 2013, this essential reference includes an analysis of Excel application development and is packed with procedures, tips, and ideas for expanding Excel's capabilities with VBA.Offers an analysis of Excel application development and a complete introduction to VBA Features invaluable advice from Mr. Spreadsheet himself, bestselling author John Walkenbach, who demonstrates all the techniques you need to create Excel applications, both large and small Covers navigating the Excel interface, formatting worksheets, interacting with other Office applications, working with collaboration tools, and using sample workbooks and John Walkenbach's award-winning Power Utility Pak to help enhance your Excel skills Provides tips, tricks, and techniques for expanding Excel's capabilities with VBA that you wont find anywhere else Excel 2013 Power Programming with VBA is packed with procedures, tips, and ideas for achieving Excel excellence with VBA.

The Docker Book: Containerization is the new virtualization


James Turnbull - 2014
    In this book, we'll will walk you through installing, deploying, managing, and extending Docker. We're going to do that by first introducing you to the basics of Docker and its components. Then we'll start to use Docker to build containers and services to perform a variety of tasks. We're going to take you through the development life cycle, from testing to production, and see where Docker fits in and how it can make your life easier. We'll make use of Docker to build test environments for new projects, demonstrate how to integrate Docker with continuous integration workflow, and then how to build application services and platforms. Finally, we'll show you how to use Docker's API and how to extend Docker yourself. We'll teach you how to: * Install Docker. * Take your first steps with a Docker container. * Build Docker images. * Manage and share Docker images. * Run and manage more complex Docker containers. * Deploy Docker containers as part of your testing pipeline. * Build multi-container applications and environments. * Explore the Docker API. * Getting Help and Extending Docker.

Mastering Bitcoin: Unlocking Digital Cryptocurrencies


Andreas M. Antonopoulos - 2014
    Whether you're building the next killer app, investing in a startup, or simply curious about the technology, this practical book is essential reading.Bitcoin, the first successful decentralized digital currency, is still in its infancy and it's already spawned a multi-billion dollar global economy. This economy is open to anyone with the knowledge and passion to participate. Mastering Bitcoin provides you with the knowledge you need (passion not included).This book includes:A broad introduction to bitcoin--ideal for non-technical users, investors, and business executivesAn explanation of the technical foundations of bitcoin and cryptographic currencies for developers, engineers, and software and systems architectsDetails of the bitcoin decentralized network, peer-to-peer architecture, transaction lifecycle, and security principlesOffshoots of the bitcoin and blockchain inventions, including alternative chains, currencies, and applicationsUser stories, analogies, examples, and code snippets illustrating key technical concepts

Learning the bash Shell


Cameron Newham - 1995
    This book will teach you how to use bash's advanced command-line features, such as command history, command-line editing, and command completion.This book also introduces shell programming,a skill no UNIX or Linus user should be without. The book demonstrates what you can do with bash's programming features. You'll learn about flow control, signal handling, and command-line processing and I/O. There is also a chapter on debugging your bash programs.Finally, Learning the bash Shell, Third Edition, shows you how to acquire, install, configure, and customize bash, and gives advice to system administrators managing bash for their user communities.This Third Edition covers all of the features of bash Version 3.0, while still applying to Versions 1.x and 2.x. It includes a debugger for the bash shell, both as an extended example and as a useful piece of working code. Since shell scripts are a significant part of many software projects, the book also discusses how to write maintainable shell scripts. And, of course, it discusses the many features that have been introduced to bash over the years: one-dimensional arrays, parameter expansion, pattern-matching operations, new commands, and security improvements.Unfailingly practical and packed with examples and questions for future study, Learning the bash Shell Third Edition is a valuable asset for Linux and other UNIX users.--back cover

Fluent Python: Clear, Concise, and Effective Programming


Luciano Ramalho - 2015
    With this hands-on guide, you'll learn how to write effective, idiomatic Python code by leveraging its best and possibly most neglected features. Author Luciano Ramalho takes you through Python's core language features and libraries, and shows you how to make your code shorter, faster, and more readable at the same time.Many experienced programmers try to bend Python to fit patterns they learned from other languages, and never discover Python features outside of their experience. With this book, those Python programmers will thoroughly learn how to become proficient in Python 3.This book covers:Python data model: understand how special methods are the key to the consistent behavior of objectsData structures: take full advantage of built-in types, and understand the text vs bytes duality in the Unicode ageFunctions as objects: view Python functions as first-class objects, and understand how this affects popular design patternsObject-oriented idioms: build classes by learning about references, mutability, interfaces, operator overloading, and multiple inheritanceControl flow: leverage context managers, generators, coroutines, and concurrency with the concurrent.futures and asyncio packagesMetaprogramming: understand how properties, attribute descriptors, class decorators, and metaclasses work"

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Applied Predictive Modeling


Max Kuhn - 2013
    Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f

Computer Science Illuminated


Nell B. Dale - 2002
    Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Machine Learning With Random Forests And Decision Trees: A Mostly Intuitive Guide, But Also Some Python


Scott Hartshorn - 2016
    They are typically used to categorize something based on other data that you have. The purpose of this book is to help you understand how Random Forests work, as well as the different options that you have when using them to analyze a problem. Additionally, since Decision Trees are a fundamental part of Random Forests, this book explains how they work. This book is focused on understanding Random Forests at the conceptual level. Knowing how they work, why they work the way that they do, and what options are available to improve results. This book covers how Random Forests work in an intuitive way, and also explains the equations behind many of the functions, but it only has a small amount of actual code (in python). This book is focused on giving examples and providing analogies for the most fundamental aspects of how random forests and decision trees work. The reason is that those are easy to understand and they stick with you. There are also some really interesting aspects of random forests, such as information gain, feature importances, or out of bag error, that simply cannot be well covered without diving into the equations of how they work. For those the focus is providing the information in a straight forward and easy to understand way.

Algorithms to Live By: The Computer Science of Human Decisions


Brian Christian - 2016
    What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.

Doing Math with Python


Amit Saha - 2015
    Python is easy to learn, and it's perfect for exploring topics like statistics, geometry, probability, and calculus. You’ll learn to write programs to find derivatives, solve equations graphically, manipulate algebraic expressions, even examine projectile motion.Rather than crank through tedious calculations by hand, you'll learn how to use Python functions and modules to handle the number crunching while you focus on the principles behind the math. Exercises throughout teach fundamental programming concepts, like using functions, handling user input, and reading and manipulating data. As you learn to think computationally, you'll discover new ways to explore and think about math, and gain valuable programming skills that you can use to continue your study of math and computer science.If you’re interested in math but have yet to dip into programming, you’ll find that Python makes it easy to go deeper into the subject—let Python handle the tedious work while you spend more time on the math.

Introduction to Information Retrieval


Christopher D. Manning - 2008
    Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.