The Study of Language


George Yule - 1985
    It introduces the analysis of the key elements of language--sounds, words, structures and meanings, and provides a solid foundation in all of the essential topics. The third edition has been extensively revised to include new sections on important contemporary issues in language study, including language and culture, African American English, sign language, and slang. A comprehensive glossary provides useful explanations of technical terms, and each chapter contains a range of new study questions and research tasks, with suggested answers.

Bad Astronomy


Philip Plait - 2002
    Plait created his popular web site: http://www.badastronomy.com/index.html, to debunk bad astronomy in popular culture. This website proved popular, which led to this first book by Plait, that carries on from the website and in a detailed and clear fashion criticises and disproves popular myths and misconceptions relating to astronomy, and promotes science as a means of explaining the skies. The work describes 24 common astronomical fallacies, including the beliefs that the Coriolis effect determines the direction that water drains in a bathtub, and that planetary alignments can cause disaster on Earth. The author sharply and convincingly dismisses astrology, creationism, and UFO sightings, and explains the principles behind basic general concepts (the Big Bang, why the sky is blue, etc.).

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

What Is This Thing Called Science?


Alan F. Chalmers - 1976
    Of particular importance is the examination of Bayesianism and the new experimentalism, as well as new chapters on the nature of scientific laws and recent trends in the realism versus anti-realism debate."Crisp, lucid and studded with telling examples… As a handy guide to recent alarums and excursions (in the philosophy of science) I find this book vigorous, gallant and useful."New Scientist

Research Methods for the Behavioral Sciences


Frederick J. Gravetter - 2002
    Gravetter, and co-author Lori-Ann B. Forzano have written a text for research methods that helps you see how interesting and exciting experimental and non-experimental research can be. Inviting and conversational, RESEARCH METHODS FOR THE BEHAVIORAL SCIENCES, Third Edition, leads you through the research process from start to finish. The text opens with tips and strategies for generating research ideas, moves to selecting measures and participants, and then offers an examination of research strategy and design. This step-by-step approach emphasizes the decisions researchers must make at each stage of the process. The authors avoid a "cookbook" approach to the facts by linking terminology with applied concepts; their "lecture in a book" style emphasizes discussion and explanation of topics. Each chapter ends with a set of exercises and activities.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Introductory Circuit Analysis


Robert L. Boylestad - 1968
    Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.

The Elements: A Visual Exploration of Every Known Atom in the Universe


Theodore Gray - 2009
    Includes a poster of Theodore Gray's iconic photographic periodic table of the elements! Based on seven years of research and photography by Theodore Gray and Nick Mann, The Elements presents the most complete and visually arresting representation available to the naked eye of every atom in the universe. Organized sequentially by atomic number, every element is represented by a big beautiful photograph that most closely represents it in its purest form. Several additional photographs show each element in slightly altered forms or as used in various practical ways. Also included are fascinating stories of the elements, as well as data on the properties of each, including atomic number, atomic symbol, atomic weight, density, atomic radius, as well as scales for electron filling order, state of matter, and an atomic emission spectrum. This of solid science and stunning artistic photographs is the perfect gift book for every sentient creature in the universe.

The Philosophy Book: Big Ideas Simply Explained


Will Buckingham - 2010
    From moral ethics to the philosophies of religions, The Philosophy Book sheds a light on the famous ideas and thinkers from the ancient world through the present day. Including theories from Pythagoras to Voltaire and Mary Wollstonecraft to Noam Chomsky, The Philosophy Book offers anyone with an interest in philosophy an essential resource to the great philosophers and the views that have shaped our society.

Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World


Mark Miodownik - 2013
    Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik a globally-renowned materials scientist has spent his life exploring In this book he examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the foam in his sneakers and the concrete in a nearby skyscraper.

Fluent Forever: How to Learn Any Language Fast and Never Forget It


Gabriel Wyner - 2014
    At thirty years old, Gabriel Wyner speaks six languages fluently.  He didn’t learn them in school -- who does? -- rather, he learned them in the past few years, working on his own and practicing on the subway, using simple techniques and free online resources. In Fluent Forever Wyner reveals what he’s discovered.   The greatest challenge to learning a foreign language is the challenge of memory; there are just too many words and too many rules. For every new word we learn, we seem to forget two old ones, and as a result, fluency can seem out of reach. Fluent Forever tackles this challenge head-on. With empathy for the language-challenged and abundant humor, Wyner deconstructs the learning process, revealing how to build a foreign language in your mind from the ground up.  Starting with pronunciation, you’ll learn how to rewire your ears and turn foreign sounds into familiar sounds. You'll retrain your tongue to produce those sounds accurately, using tricks from opera singers and actors. Next, you'll begin to tackle words, and connect sounds and spellings to imagery, rather than translations, which will enable you to think in a foreign language.  And with the help of sophisticated spaced-repetition techniques, you'll be able to memorize hundreds of words a month in minutes every day. Soon, you'll gain the ability to learn grammar and more difficult abstract words--without the tedious drills and exercises of language classes and grammar books.  This is brain hacking at its most exciting, taking what we know about neuroscience and linguistics and using it to create the most efficient and enjoyable way to learn a foreign language in the spare minutes of your day.

Schaum's Outline of College Physics


Frederick J. Bueche - 2006
    Provides a review of introductory noncalculus-based physics for those who do not have a strong background in mathematics.

Principles of Genetics


D. Peter Snustad - 1997
    This clear, concise look at the basic principles and concepts of genetics uses a human genetics perspective to discuss the methods and experiments upon which genetic principles are based, such as DNA replication.

Thermodynamics


Enrico Fermi - 1956
    Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).