Operations Research: An Introduction


Hamdy A. Taha - 1976
    The applications and computations in operations research are emphasized. Significantly revised, this text streamlines the coverage of the theory, applications, and computations of operations research. Numerical examples are effectively used to explain complex mathematical concepts. A separate chapter of fully analyzed applications aptly demonstrates the diverse use of OR. The popular commercial and tutorial software AMPL, Excel, Excel Solver, and Tora are used throughout the book to solve practical problems and to test theoretical concepts. New materials include Markov chains, TSP heuristics, new LP models, and a totally new simplex-based approach to LP sensitivity analysis.

The Mystery of Numbers


Annemarie Schimmel - 1984
    But in this fascinating book, Annemarie Schimmel shows that numbers have been filled with mystery and meaning since the earliest times, and across every society.In The Mystery of Numbers Annemarie Schimmel conducts an illuminating tour of the mysteries attributed to numbers over the centuries. She begins with an informative and often surprising introduction to the origins of number systems: pre-Roman Europeans, for example, may have had one based on twenty, not ten (as suggested by the English word "score" and the French word for 80, quatrevingt—four times twenty), while the Mayans had a system more sophisticated than our own. Schimmel also reveals how our fascination with numbers has led to a rich cross-fertilization of mathematical knowledge: "Arabic" numerals, for instance, were picked up by Europe from the Arabs, who had earlier adopted them from Indian sources ("Algorithm" and "algebra" are corruptions of the Arabic author and title names of a mathematical text prized in medieval Europe). But the heart of the book is an engrossing guide to the symbolism of numbers. Number symbolism, she shows, has deep roots in Western culture, from the philosophy of the Pythagoreans and Platonists, to the religious mysticism of the Cabala and the Islamic Brethren of Purity, to Kepler's belief that the laws of planetary motion should be mathematically elegant, to the unlucky thirteen. After exploring the sources of number symbolism, Schimmel examines individual numbers ranging from one to ten thousand, discussing the meanings they have had for Judaic, Christian, and Islamic traditions, with examples from Indian, Chinese, and Native American cultures as well. Two, for instance, has widely been seen as a number of contradiction and polarity, a number of discord and antithesis. And six, according to ancient and neo-platonic thinking, is the most perfect number because it is both the sum and the product of its parts (1+2+3=6 and 1x2x3=6). Using examples ranging from the Bible to the Mayans to Shakespeare, she shows how numbers have been considered feminine and masculine, holy and evil, lucky and unlucky.A highly respected scholar of Islamic culture, Annemarie Schimmel draws on her vast knowledge to paint a rich, cross-cultural portrait of the many meanings of numbers. Engaging and accessible, her account uncovers the roots of a phenomenon we all feel every Friday the thirteenth.

Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations


Richard Elwes - 2010
    Distilled into 1001 mini-essays arranged thematically, this unique book moves steadily from the basics through to the most advanced areas of math, making it the ideal guide for both the beginner and the math wiz.The book covers all of the fundamental mathematical disciplines:Geometry Numbers Analysis Logic Algebra Probability and statistics Applied mathematics Discrete mathematics Games and recreational mathematics Philosophy and metamathematicsExpert mathematician Richard Elwes explains difficult concepts in the simplest language with a minimum of jargon. Along the way he reveals such mathematical magic as how to count to 1023 using just 10 fingers and how to make an unbreakable code.Enlightening and entertaining, Mathematics 1001 makes the language of math come alive.

Introduction to Mathematical Philosophy


Bertrand Russell - 1918
    In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.

Introduction to Superstrings and M-Theory


Michio Kaku - 1989
    Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: - Four-dimensional superstrings - Kac-Moody algebras - Teichm�ller spaces and Calabi-Yau manifolds - M-theory Membranes and D-branes - Duality and BPS relations - Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.

Learning to Love Math: Teaching Strategies That Change Student Attitudes and Get Results


Judy Willis - 2010
    Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity.With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to* Improve deep-seated negative attitudes toward math.* Plan lessons with the goal of achievable challenge in mind.* Reduce mistake anxiety with techniques such as errorless math and estimation.* Teach to different individual learning strengths and skill levels.* Spark motivation.* Relate math to students' personal interests and goals.* Support students in setting short-term and long-term goals.* Convince students that they can change their intelligence.With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included--providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!

Information Theory: A Tutorial Introduction


James V. Stone - 2015
    In this richly illustrated book, accessible examples are used to show how information theory can be understood in terms of everyday games like '20 Questions', and the simple MatLab programs provided give hands-on experience of information theory in action. Written in a tutorial style, with a comprehensive glossary, this text represents an ideal primer for novices who wish to become familiar with the basic principles of information theory.Download chapter 1 from http://jim-stone.staff.shef.ac.uk/Boo...

Physics and Technology for Future Presidents: An Introduction to the Essential Physics Every World Leader Needs to Know


Richard A. Muller - 2006
    From the physics of energy to climate change, and from spy technology to quantum computers, this is the only textbook to focus on the modern physics affecting the decisions of political leaders and CEOs and, consequently, the lives of every citizen. How practical are alternative energy sources? Can satellites really read license plates from space? What is the quantum physics behind iPods and supermarket scanners? And how much should we fear a terrorist nuke? This lively book empowers students possessing any level of scientific background with the tools they need to make informed decisions and to argue their views persuasively with anyone--expert or otherwise.Based on Richard Muller's renowned course at Berkeley, the book explores critical physics topics: energy and power, atoms and heat, gravity and space, nuclei and radioactivity, chain reactions and atomic bombs, electricity and magnetism, waves, light, invisible light, climate change, quantum physics, and relativity. Muller engages readers through many intriguing examples, helpful facts to remember, a fun-to-read text, and an emphasis on real-world problems rather than mathematical computation. He includes chapter summaries, essay and discussion questions, Internet research topics, and handy tips for instructors to make the classroom experience more rewarding.Accessible and entertaining, "Physics and Technology for Future Presidents" gives students the scientific fluency they need to become well-rounded leaders in a world driven by science and technology.Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http: //press.princeton.edu/class_use/solutio...

Introduction to Graph Theory


Douglas B. West - 1995
    Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving


Sanjoy Mahajan - 2010
    Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Fuzzy Thinking: The New Science of Fuzzy Logic


Bart Kosko - 1993
    An authoritative introduction to "fuzzy logic" brings readers up to speed on the "smart" products and computers that will change all of our lives in the future.

Becoming the Math Teacher You Wish You'd Had: Ideas and Strategies from Vibrant Classrooms


Tracy Zager - 2017
    Pose the same question to students and many will use words like "boring", "useless", and even "humiliating". In  Becoming the Math Teacher You Wish You'd Had , author Tracy Zager helps teachers close this gap by making math class more like mathematics. Tracy has spent years working with highly skilled math teachers in a diverse range of settings and grades. You'll find this book jam-packed with new ideas from these vibrant classrooms.  How to Teach Student-Centered Mathematics: Zager outlines a problem-solving approach to mathematics for elementary and middle school educators looking for new ways to inspire student learningBig Ideas, Practical Application: This math book contains dozens of practical and accessible teaching techniques that focus on fundamental math concepts, including strategies that simulate connection of big ideas; rich tasks that encourage students to wonder, generalize, hypothesize, and persevere; and routines to teach students how to collaborateKey Topics for Elementary and Middle School Teachers:  Becoming the Math Teacher You Wish You'd Had  offers fresh perspectives on common challenges, from formative assessment to classroom management for elementary and middle school teachersAll teachers can move towards increasingly authentic and delightful mathematics teaching and learning. This important book helps develop instructional techniques that will make the math classes we teach so much better than the math classes we took.