Who Are You: The Life of Pete Townshend
Mark Wilkerson - 2006
Author Mark Wilkerson interviewed Townshend himself and several of Townshend's friends and associates for this biography.
Just Six Numbers: The Deep Forces That Shape the Universe
Martin J. Rees - 1999
There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.
John Von Neumann
Norman Macrae - 1992
This book discusses Von Neumann's work in areas such as game theory, mathematics, physics, and meteorology which formed the building blocks for the most important discoveries of the century: the modern computer, game theory, and the atom bomb.
Dead Wake: The Last Crossing of the Lusitania by Erik Larson | Chapter Compilation
Ethan Thomas - 2016
The ship was called “magnificent”, consuming as much as one hundred forty tons of coal every day even if it just stands still on the dock, and standing seven stories tall from dock to bridge. She was considered by engineers and shipbuilders as one of the finest examples of man’s ingenuity and creativity. In addition, out of all the ships that were converted for use in the war, the Lusitania was the only one that was exempted and continued on as a cruise ship. However, its job of carrying passengers across the Atlantic Ocean was not the thing that made her famous today. Read more.... Download your copy today! for a limited time discount of only $2.99! Available on PC, Mac, smart phone, tablet or Kindle device. © 2015 All Rights Reserved by Unlimited Press Works, LLC
The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us
Noson S. Yanofsky - 2013
This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science
Michael S. Schneider - 1994
This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.
The Structure of Scientific Revolutions
Thomas S. Kuhn - 1962
The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach. With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age. This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context. Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.
A Mind at Play: How Claude Shannon Invented the Information Age
Jimmy Soni - 2017
He constructed a fleet of customized unicycles and a flamethrowing trumpet, outfoxed Vegas casinos, and built juggling robots. He also wrote the seminal text of the digital revolution, which has been called “the Magna Carta of the Information Age.” His discoveries would lead contemporaries to compare him to Albert Einstein and Isaac Newton. His work anticipated by decades the world we’d be living in today—and gave mathematicians and engineers the tools to bring that world to pass.In this elegantly written, exhaustively researched biography, Jimmy Soni and Rob Goodman reveal Claude Shannon’s full story for the first time. It’s the story of a small-town Michigan boy whose career stretched from the era of room-sized computers powered by gears and string to the age of Apple. It’s the story of the origins of our digital world in the tunnels of MIT and the “idea factory” of Bell Labs, in the “scientists’ war” with Nazi Germany, and in the work of Shannon’s collaborators and rivals, thinkers like Alan Turing, John von Neumann, Vannevar Bush, and Norbert Wiener.And it’s the story of Shannon’s life as an often reclusive, always playful genius. With access to Shannon’s family and friends, A Mind at Play brings this singular innovator and creative genius to life.
The Way Things Are
Lucretius
[captures] the relentless urgency of Lucretius' didacticism, his passionate conviction and proselytizing fervour.' --The Classical Review
Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension
Michio Kaku - 1994
Indeed, many physicists today believe that there are other dimensions beyond the four of our space-time, and that a unified vision of the various forces of nature can be achieved, if we consider that everything we see around us, from the trees to the stars are nothing but vibrations in hyperspace. Hyperspace theory - and its more recent derivation, superstring theory - is the eye of this revolution. In this book, Michio Kaku shows us a fascinating panorama, which completely changes our view of the cosmos, and takes us on a dazzling journey through new dimensions: wormholes connecting parallel universes, time machines, "baby universes" and more. Similar wonders are emerging in some pages in which everything is explained with elegant simplicity and where the mathematical formulation is replaced by imaginative illustrations that allow the problems to be visualized. The result is a very entertaining and surprising book, which even leaves behind the greatest fantasies of the old science fiction authors.
Imagining Numbers
Barry Mazur - 2002
This book reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.
The Number Devil: A Mathematical Adventure
Hans Magnus Enzensberger - 1997
As we dream with him, we are taken further and further into mathematical theory, where ideas eventually take flight, until everyone--from those who fumble over fractions to those who solve complex equations in their heads--winds up marveling at what numbers can do.Hans Magnus Enzensberger is a true polymath, the kind of superb intellectual who loves thinking and marshals all of his charm and wit to share his passions with the world. In The Number Devil, he brings together the surreal logic of Alice in Wonderland and the existential geometry of Flatland with the kind of math everyone would love, if only they had a number devil to teach them.
The Pinball Effect: How Renaissance Water Gardens Made The Carburetor Possible - and Other Journeys Through Knowledge
James Burke - 1996
Using 100s of fascinating examples, James Burke shows how old established ideas in science and technology often lead to serendipitous and amazing modern discoveries and innovations.
Energy: A Human History
Richard Rhodes - 2018
Ultimately, the history of these challenges tells the story of humanity itself. Through an unforgettable cast of characters, Pulitzer Prize-winning author Richard Rhodes explains how wood gave way to coal and coal made room for oil, as we now turn to natural gas, nuclear power, and renewable energy. Rhodes looks back on five centuries of progress, through such influential figures as Queen Elizabeth I, King James I, Benjamin Franklin, Herman Melville, John D. Rockefeller, and Henry Ford. In Energy, Rhodes highlights the successes and failures that led to each breakthrough in energy production; from animal and waterpower to the steam engine, from internal-combustion to the electric motor. He addresses how we learned from such challenges, mastered their transitions, and capitalized on their opportunities. Rhodes also looks at the current energy landscape, with a focus on how wind energy is competing for dominance with cast supplies of coal and natural gas. He also addresses the specter of global warming, and a population hurtling towards ten billion by 2100. Human beings have confronted the problem of how to draw life from raw material since the beginning of time. Each invention, each discovery, each adaptation brought further challenges, and through such transformations, we arrived at where we are today. In Rhodes’s singular style, Energy details how this knowledge of our history can inform our way tomorrow.
Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge
William Poundstone - 1988
This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.
