The Poincaré Conjecture: In Search of the Shape of the Universe


Donal O'Shea - 2007
    He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.

Sacred Number: The Secret Quality of Quantities


Miranda Lundy - 2005
    Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.

Unweaving the Rainbow: Science, Delusion and the Appetite for Wonder


Richard Dawkins - 1998
    Mysteries don't lose their poetry because they are solved: the solution often is more beautiful than the puzzle, uncovering deeper mysteries. With the wit, insight, and spellbinding prose that have made him a best-selling author, Dawkins takes up the most important and compelling topics in modern science, from astronomy and genetics to language and virtual reality, combining them in a landmark statement of the human appetite for wonder. This is the book Richard Dawkins was meant to write: a brilliant assessment of what science is (and isn't), a tribute to science not because it is useful but because it is uplifting.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics


John Derbyshire - 2003
    Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.

The Rebirth of Nature: The Greening of Science and God


Rupert Sheldrake - 1990
    In The Rebirth of Nature, Sheldrake urges us to move beyond the centuries-old mechanistic view of nature, explaining why we can no longer regard the world as inanimate and purposeless. Sheldrake shows how recent developments in science itself have brought us to the threshold of a new synthesis in which traditional wisdom, intuitive experience, and scientific insight can be mutually enriching.

A History of Knowledge: Past, Present, and Future


Charles Van Doren - 1991
    Massive in its scope, and yet totally accessible, A HISTORY OF KNOWLEDGE covers not only all the great theories and discoveries of the human race, but also explores the social conditions, political climates, and individual men and women of genius that brought ideas to fruition throughout history."Crystal clear and concise...Explains how humankind got to know what it knows."Clifton FadimanSelected by the Book-of-the-Month Club and the History Book Club

From the Closed World to the Infinite Universe


Alexandre Koyré - 1957
    In the wake of discoveries through the telescope and Copernican theory, the notion of an ordered cosmos of "fixed stars" gave way to that of a universe infinite in both time and space—with significant and far-reaching consequences for human thought. Alexandre Koyré interprets this revolution in terms of the change that occurred in our conception of the universe and our place in it and shows the primacy of this change in the development of the modern world.

The Nothing That Is: A Natural History of Zero


Robert M. Kaplan - 1999
    As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.

Philosophy of Science: A Very Short Introduction


Samir Okasha - 2002
    He also looks at philosophical issues in particular sciences, including the problem of classification in biology, and the nature of space and time in physics. The final chapter touches on the conflicts between science and religion, and explores whether science is ultimately a good thing.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Introduction to Special Relativity


Robert Resnick - 1968
    Professor Resnick presents a fundamental and unified development of the subject with unusually clear discussions of the aspects that usually trouble beginners. He includes, for example, a section on the common sense of relativity. His presentation is lively and interspersed with historical, philosophical and special topics (such as the twin paradox) that will arouse and hold the reader's interest. You'll find many unique features that help you grasp the material, such as worked-out examples, summary tables, thought questions and a wealth of excellent problems. The emphasis throughout the book is physical. The experimental background, experimental confirmation of predictions, and the physical interpretation of principles are stressed. The book treats relativistic kinematics, relativistic dynamics, and relativity and electromagnetism and contains special appendices on the geometric representation of space-time and on general relativity. Its organization permits an instructor to vary the length and depth of his treatment and to use the book either with or following classical physics. These features make it an ideal companion for introductory course

Pascal's Wager: The Man Who Played Dice with God


James A. Connor - 2006
    A child prodigy, Pascal made essential additions to Descartes's work at age sixteen. By age nineteen, he had invented the world's first mechanical calculator. But despite his immense contributions to modern science and mathematical thinking, it is Pascal's wager with God that set him apart from his peers as a man fully engaged with both religious and scientific pursuits.One night in 1654, Pascal had a visit from God, a mystical experience that changed his life. Struggling to explain God's existence to others, Pascal dared to apply his mathematical work to religious faith, playing dice with divinity: he argued for the existence of God, basing his position not on rigorous logical principles as did Aquinas or Anselm of Canterbury, but on outcomes—his famous wager. By applying to the existence of God the same rules that governed the existence and position of the universe itself, Pascal sounded the death knell for medieval "certainties" and paved the way for modern thinking.