Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Grokking Simplicity: Taming complex software with functional thinking


Eric Normand - 2019
    Grokking Simplicity is a friendly, practical guide that will change the way you approach software design and development. It introduces a unique approach to functional programming that explains why certain features of software are prone to complexity, and teaches you the functional techniques you can use to simplify these systems so that they’re easier to test and debug.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

How Google Tests Software


James A. Whittaker - 2012
    Legendary testing expert James Whittaker, until recently a Google testing leader, and two top Google experts reveal exactly how Google tests software, offering brand-new best practices you can use even if you're not quite Google's size...yet! Breakthrough Techniques You Can Actually Use Discover 100% practical, amazingly scalable techniques for analyzing risk and planning tests...thinking like real users...implementing exploratory, black box, white box, and acceptance testing...getting usable feedback...tracking issues...choosing and creating tools...testing "Docs & Mocks," interfaces, classes, modules, libraries, binaries, services, and infrastructure...reviewing code and refactoring...using test hooks, presubmit scripts, queues, continuous builds, and more. With these techniques, you can transform testing from a bottleneck into an accelerator-and make your whole organization more productive!

Operating System Concepts


Abraham Silberschatz - 1985
    By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.

Database Internals: A deep-dive into how distributed data systems work


Alex Petrov - 2019
    But with so many distributed databases and tools available today, it’s often difficult to understand what each one offers and how they differ. With this practical guide, Alex Petrov guides developers through the concepts behind modern database and storage engine internals.Throughout the book, you’ll explore relevant material gleaned from numerous books, papers, blog posts, and the source code of several open source databases. These resources are listed at the end of parts one and two. You’ll discover that the most significant distinctions among many modern databases reside in subsystems that determine how storage is organized and how data is distributed.This book examines:Storage engines: Explore storage classification and taxonomy, and dive into B-Tree-based and immutable log structured storage engines, with differences and use-cases for eachDistributed systems: Learn step-by-step how nodes and processes connect and build complex communication patterns, from UDP to reliable consensus protocolsDatabase clusters: Discover how to achieve consistent models for replicated data

But How Do It Know? - The Basic Principles of Computers for Everyone


J. Clark Scott - 2009
    Its humorous title begins with the punch line of a classic joke about someone who is baffled by technology. It was written by a 40-year computer veteran who wants to take the mystery out of computers and allow everyone to gain a true understanding of exactly what computers are, and also what they are not. Years of writing, diagramming, piloting and editing have culminated in one easy to read volume that contains all of the basic principles of computers written so that everyone can understand them. There used to be only two types of book that delved into the insides of computers. The simple ones point out the major parts and describe their functions in broad general terms. Computer Science textbooks eventually tell the whole story, but along the way, they include every detail that an engineer could conceivably ever need to know. Like Momma Bear's porridge, But How Do It Know? is just right, but it is much more than just a happy medium. For the first time, this book thoroughly demonstrates each of the basic principles that have been used in every computer ever built, while at the same time showing the integral role that codes play in everything that computers are able to do. It cuts through all of the electronics and mathematics, and gets right to practical matters. Here is a simple part, see what it does. Connect a few of these together and you get a new part that does another simple thing. After just a few iterations of connecting up simple parts - voilà! - it's a computer. And it is much simpler than anyone ever imagined. But How Do It Know? really explains how computers work. They are far simpler than anyone has ever permitted you to believe. It contains everything you need to know, and nothing you don't need to know. No technical background of any kind is required. The basic principles of computers have not changed one iota since they were invented in the mid 20th century. "Since the day I learned how computers work, it always felt like I knew a giant secret, but couldn't tell anyone," says the author. Now he's taken the time to explain it in such a manner that anyone can have that same moment of enlightenment and thereafter see computers in an entirely new light.

Dependency Injection in .NET


Mark Seemann - 2011
    Instead of hard-coding dependencies, such as specifying a database driver, you inject a list of services that a component may need. The services are then connected by a third party. This technique enables you to better manage future changes and other complexity in your software.About this BookDependency Injection in .NET introduces DI and provides a practical guide for applying it in .NET applications. The book presents the core patterns in plain C#, so you'll fully understand how DI works. Then you'll learn to integrate DI with standard Microsoft technologies like ASP.NET MVC, and to use DI frameworks like StructureMap, Castle Windsor, and Unity. By the end of the book, you'll be comfortable applying this powerful technique in your everyday .NET development.This book is written for C# developers. No previous experience with DI or DI frameworks is required. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. Winner of 2013 Jolt Awards: The Best Books—one of five notable books every serious programmer should read.What's InsideMany C#-based examplesA catalog of DI patterns and anti-patternsUsing both Microsoft and open source DI frameworksTabel of ContentsPART 1 PUTTING DEPENDENCY INJECTION ON THE MAPA Dependency Injection tasting menuA comprehensive exampleDI ContainersPART 2 DI CATALOGDI patternsDI anti-patternsDI refactoringsPART 3 DIY DIObject CompositionObject LifetimeInterceptionPART 4 DI CONTAINERSCastle WindsorStructureMapSpring.NETAutofacUnityMEF

Team Topologies: Organizing Business and Technology Teams for Fast Flow


Matthew Skelton - 2019
    But how do you build the best team organization for your specific goals, culture, and needs? Team Topologies is a practical, step-by-step, adaptive model for organizational design and team interaction based on four fundamental team types and three team interaction patterns. It is a model that treats teams as the fundamental means of delivery, where team structures and communication pathways are able to evolve with technological and organizational maturity.In Team Topologies, IT consultants Matthew Skelton and Manuel Pais share secrets of successful team patterns and interactions to help readers choose and evolve the right team patterns for their organization, making sure to keep the software healthy and optimize value streams.Team Topologies is a major step forward in organizational design for software, presenting a well-defined way for teams to interact and interrelate that helps make the resulting software architecture clearer and more sustainable, turning inter-team problems into valuable signals for the self-steering organization.

SQL Antipatterns


Bill Karwin - 2010
    Now he's sharing his collection of antipatterns--the most common errors he's identified in those thousands of requests for help. Most developers aren't SQL experts, and most of the SQL that gets used is inefficient, hard to maintain, and sometimes just plain wrong. This book shows you all the common mistakes, and then leads you through the best fixes. What's more, it shows you what's behind these fixes, so you'll learn a lot about relational databases along the way. Each chapter in this book helps you identify, explain, and correct a unique and dangerous antipattern. The four parts of the book group the anti​patterns in terms of logical database design, physical database design, queries, and application development. The chances are good that your application's database layer already contains problems such as Index Shotgun, Keyless Entry, Fear of the Unknown, and Spaghetti Query. This book will help you and your team find them. Even better, it will also show you how to fix them, and how to avoid these and other problems in the future. SQL Antipatterns gives you a rare glimpse into an SQL expert's playbook. Now you can stamp out these common database errors once and for all. Whatever platform or programming language you use, whether you're a junior programmer or a Ph.D., SQL Antipatterns will show you how to design and build databases, how to write better database queries, and how to integrate SQL programming with your application like an expert. You'll also learn the best and most current technology for full-text search, how to design code that is resistant to SQL injection attacks, and other techniques for success.

Working in Public: The Making and Maintenance of Open Source Software


Nadia Eghbal - 2020
    In the late 1990s, it provided an optimistic model for public

Domain-Driven Design Quickly


Floyd Marinescu - 2006
    This book is a short, quickly-readable summary and introduction to the fundamentals of DDD; it does not introduce any new concepts; it attempts to concisely summarize the essence of what DDD is, drawing mostly Eric Evans' original book, as well other sources since published such as Jimmy Nilsson's Applying Domain Driven Design, and various DDD discussion forums. The main topics covered in the book include: Building Domain Knowledge, The Ubiquitous Language, Model Driven Design, Refactoring Toward Deeper Insight, and Preserving Model Integrity. Also included is an interview with Eric Evans on Domain Driven Design today.

Python Tricks: A Buffet of Awesome Python Features


Dan Bader - 2017
    Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today. Who Should Read This Book: If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review. If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2. If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista. If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge. What Python Developers Say About The Book: "I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

System Design Interview – An Insider's Guide


Alex Xu - 2020
    This book provides a step-by-step framework on how to tackle a system design question. It includes many real-world examples to illustrate the systematic approach with detailed steps that you can follow.What’s inside?- An insider’s take on what interviewers really look for and why.- A 4-step framework for solving any system design interview question.- 15 real system design interview questions with detailed solutions.- 188 diagrams to visually explain how different systems work.Table Of ContentsChapter 1: Scale From Zero To Millions Of UsersChapter 2: Back-of-the-envelope EstimationChapter 3: A Framework For System Design InterviewsChapter 4: Design A Rate LimiterChapter 5: Design Consistent HashingChapter 6: Design A Key-value StoreChapter 7: Design A Unique Id Generator In Distributed SystemsChapter 8: Design A Url ShortenerChapter 9: Design A Web CrawlerChapter 10: Design A Notification SystemChapter 11: Design A News Feed SystemChapter 12: Design A Chat SystemChapter 13: Design A Search Autocomplete SystemChapter 14: Design YoutubeChapter 15: Design Google DriveChapter 16: The Learning Continues

Software Architecture in Practice


Len Bass - 2003
    Distinct from the details of implementation, algorithm, and data representation, an architecture holds the key to achieving system quality, is a reusable asset that can be applied to subsequent systems, and is crucial to a software organization's business strategy.Drawing on their own extensive experience, the authors cover the essential technical topics for designing, specifying, and validating a system. They also emphasize the importance of the business context in which large systems are designed. Their aim is to present software architecture in a real-world setting, reflecting both the opportunities and constraints that companies encounter. To that end, case studies that describe successful architectures illustrate key points of both technical and organizational discussions.Topics new to this edition include: Architecture design and analysis, including the Architecture Tradeoff Analysis Method (ATAM) Capturing quality requirements and achieving them through quality scenarios and tactics Using architecture reconstruction to recover undocumented architectures Documenting architectures using the Unified Modeling Language (UML) New case studies, including Web-based examples and a wireless Enterprise JavaBeans™ (EJB) system designed to support wearable computers The financial aspects of architectures, including use of the Cost Benefit Analysis Method (CBAM) to make decisions If you design, develop, or manage the building of large software systems (or plan to do so), or if you are interested in acquiring such systems for your corporation or government agency, use Software Architecture in Practice, Second Edition, to get up to speed on the current state of software architecture.