A Brief History of Mathematical Thought: Key concepts and where they come from


Luke Heaton - 2015
    In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story. The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations. In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.

Puzzle Baron's Logic Puzzles


Puzzle Baron - 2010
    Unlike other logic puzzle books, every puzzle includes statistics - such as the average completion time, the record completion time, and the percentage of people to complete the puzzle - to bring out the competitor in each puzzler and better inform them on how easy or difficult each puzzle is.?Features 200 grid-based logic puzzles?Includes puzzles statistics for added excitement?Ideal for kids and adults

How to read and do proofs


Daniel Solow - 1982
    Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

Logic: An Introduction to Elementary Logic


Wilfrid Hodges - 1980
    From this starting point, and assuming no previous knowledge of logic, Wilfrid Hodges takes the reader through the whole gamut of logical expressions in a simple and lively way. Readers who are more mathematically adventurous will find optional sections introducing rather more challenging material. 'A lively and stimulating book' Philosophy

The Goddess of Small Victories


Yannick Grannec - 2012
    To the great annoyance of the Institute of Advanced Studies, she refuses to hand over Gödel’s precious records. Anna Roth, the timid daughter of two mathematicians who are part of the Princeton clique, is given the difficult task of befriending Adele and retrieving the documents from her. As Adele begins to notice Anna’s own estrangement from her milieu and starts to trust her, she opens the gates of her memory and together they travel back to Vienna during the Nazi era, Princeton right after the war, the pressures of McCarthyism, the end of the positivist ideal, and the advent of nuclear weapons. It is this epic story of a genius who could never quite find his place in the world, and the determination of the woman who loved him, that will eventually give Anna the courage to change her own life.

The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day


David J. Hand - 2014
    Hand argues that extraordinarily rare events are anything but. In fact, they’re commonplace. Not only that, we should all expect to experience a miracle roughly once every month.     But Hand is no believer in superstitions, prophecies, or the paranormal. His definition of “miracle” is thoroughly rational. No mystical or supernatural explanation is necessary to understand why someone is lucky enough to win the lottery twice, or is destined to be hit by lightning three times and still survive. All we need, Hand argues, is a firm grounding in a powerful set of laws: the laws of inevitability, of truly large numbers, of selection, of the probability lever, and of near enough.     Together, these constitute Hand’s groundbreaking Improbability Principle. And together, they explain why we should not be so surprised to bump into a friend in a foreign country, or to come across the same unfamiliar word four times in one day. Hand wrestles with seemingly less explicable questions as well: what the Bible and Shakespeare have in common, why financial crashes are par for the course, and why lightning does strike the same place (and the same person) twice. Along the way, he teaches us how to use the Improbability Principle in our own lives—including how to cash in at a casino and how to recognize when a medicine is truly effective.     An irresistible adventure into the laws behind “chance” moments and a trusty guide for understanding the world and universe we live in, The Improbability Principle will transform how you think about serendipity and luck, whether it’s in the world of business and finance or you’re merely sitting in your backyard, tossing a ball into the air and wondering where it will land.

A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics


David Stipp - 2017
    More than two centuries after Euler's death, it is still regarded as a conceptual diamond of unsurpassed beauty. Called Euler's identity or God's equation, it includes just five numbers but represents an astonishing revelation of hidden connections. It ties together everything from basic arithmetic to compound interest, the circumference of a circle, trigonometry, calculus, and even infinity. In David Stipp's hands, Euler's identity formula becomes a contemplative stroll through the glories of mathematics. The result is an ode to this magical field.

The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us


Noson S. Yanofsky - 2013
    This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.

Asimov on Numbers


Isaac Asimov - 1978
    From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

Logic: A Complete Introduction: Teach Yourself


Siu-Fan Lee - 2017
    As well as looking at logic in theoretical terms the book considers its everyday uses and demonstrates how it has genuine practical applications. It will take you step by step through the most difficult concepts and is packed with exercises to help you consolidate your learning at every stage. Covering everything from syllogistic logic to logical paradoxes and even looking at logic in Alice in Wonderland, this is the only guide you will ever need.

The Power of Vedic Maths


Atul Gupta - 2013
    The absence of a book, explaining the techniques in a simple language, has been felt acutely for a long time. This book has been written using a step-by-step approach, and attempts to fill the existing void. It includes several solved problems in addition to 1000 practice problems with answers. It also includes a special chapter which shows the application of the techniques to problems set in competitive exams like CAT, CET etc.People from all walks of life including school and college students, teachers, parents and also those from non-mathematical areas of study will discover the joys of solving mathematical problems using the wonderful set of techniques called Vedic Maths.

F*ck Being Fat: Solve your weight problem once and for all with math and willpower


Alan Roberts - 2020
     In our world today we hear a lot about self-love; a lot about embracing who you are now. But if you really love yourself and your body, you wouldn't act like you have a spare. It is never too late to love yourself enough to be healthy. WARNING IF YOU ARE SENSITIVE, DO NOT BUY THIS BOOK. It's not for you. This book is for people with thick skin who believe good health is more important than polite presentation. So if you care about getting healthy, staying fit, and doing it in a sustainable way - then consider this book your drill instructor (harsh language and all). ABOUT THE AUTHOR Alan Roberts is the founder of Every Damn Day Fitness and Co-Founder of the Damn Collective with his wife Crystal. Together, they have helped thousands of people increase the quality of their lives by coaching them to healthier habits, wisdom which they accrued through trial and error in their own lives. Originally from Pittsburgh, PA, Alan now resides in sunny, south west Florida.

This is not a book


Michael Picard - 2007
    Each section also includes quizzes, games, and mental exercises.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.