Book picks similar to
Statistics in a Nutshell: A Desktop Quick Reference by Sarah Boslaugh
reference
statistics
work
mathematics
Heard on The Street: Quantitative Questions from Wall Street Job Interviews
Timothy Falcon Crack - 2000
The interviewers use the same questions year-after-year and here they are---with solutions! These questions come from all types of interviews (corporate finance, sales and trading, quant research, etc), but they are especially likely in quantitative capital markets job interviews. The questions come from all levels of interviews (undergrad, MBA, PhD), but they are especially likely if you have, or almost have, an MS or MBA. The latest edition includes over 120 non-quantitative actual interview questions, and a new section on interview technique---based partly on Dr. Crack's experiences interviewing candidates for the world's largest institutional asset manager. Dr. Crack has a PhD from MIT. He has won many teaching awards and has publications in the top academic, practitioner, and teaching journals in finance. He has degrees in Mathematics/Statistics, Finance, and Financial Economics and a diploma in Accounting/Finance. Dr. Crack taught at the university level for 20 years including four years as a front line teaching assistant for MBA students at MIT. He recently headed a quantitative active equity research team at the world's largest institutional money manager.
Elements of Programming
Alexander Stepanov - 2009
And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Internetworking with TCP/IP Vol.1: Principles, Protocols, and Architecture
Douglas E. Comer - 1988
Discover how the basic TCP/IP technology has survived and evolved over two decades of exponential growth, and understand the TCP/IP protocols and technical advances. This edition explains emerging technologies such as Mobile IP, Virtual Private Networks, resource reservation with RSVP, and Ipv6. Comer reveals how to master TCP/IP and how the Internet works. The reader is required to have a modest background in the fundamentals of computer systems, but does not need sophisticated mathematics. As with previous editions, this edition provides an introduction to physical networks and then shows how they are combined to form an internet. It states design principles clearly, and discusses motivations and consequences. THIS NEW EDITION OF VOLUME 1: *Explains how voice and video are sent over IP internets and how IP Telephony operates *Describes Mobile IP (a technology that allows a computer to move fr
How Not to Be Wrong: The Power of Mathematical Thinking
Jordan Ellenberg - 2014
In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.
Effective Data Visualization: The Right Chart for the Right Data
Stephanie D.H. Evergreen - 2016
H. Evergreen, Effective Data Visualization shows readers how to create Excel charts and graphs that best communicate data findings. This comprehensive how-to guide functions as a set of blueprints--supported by research and the author's extensive experience with clients in industries all over the world--for conveying data in an impactful way. Delivered in Evergreen's humorous and approachable style, the book covers the spectrum of graph types available beyond the default options, how to determine which one most appropriately fits specific data stories, and easy steps for making the chosen graph in Excel.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.
Differential Equations
Richard Bronson - 2010
This supplement will cater to the requirements of students by covering all important topics of Laplace transformation, Matrices, Numerical Methods. Further enhanced is its usability by inclusion of chapter end questions in sync with student needs. Table of contents: 1. Basic Concepts 2. An Introduction to Modeling and Qualitative Methods 3. Classification of First-Order Differential Equations 4. Separable First-Order Differential Equations 5. Exact First-order Differential Equations 6. Linear First-Order Differential Equations 7. Applications of First-Order Differential Equations 8. Linear Differential Equations: Theory of Solutions 9. Second-Order Linear Homogeneous Differential Equations with Constant Coefficients 10. nth-Order Linear Homogeneous Differential Equations with Constant Coefficients 11. The Method of Undetermined Coefficients 12. Variation of Parameters 13. Initial-Value Problems for Linear Differential Equations 14. Applications of Second-Order Linear Differential Equations 15. Matrices 16. eAt 17. Reduction of Linear Differential Equations to a System of First-Order Equations 18. Existence and Uniqueness of Solutions 19. Graphical and Numerical Methods for Solving First-Order Differential Equations 20. Further Numerical Methods for Solving First-Order Differential Equations 21. Numerical Methods for Solving Second-Order Differential Equations Via Systems 22. The Laplace Transform 23. Inverse Laplace Transforms 24. Convolutions and the Unit Step Function 25. Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms 26. Solutions of Linear?Systems by Laplace Transforms 27. Solutions of Linear Differential Equations with Constant Coefficients by Matrix Methods 28. Power Series Solutions of Linear Differential Equations with Variable Coefficients 29. Special Functions 30. Series Solutions N
Networks, Crowds, and Markets
David Easley - 2010
This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.
Paul Wilmott Introduces Quantitative Finance (The Wiley Finance Series)
Paul Wilmott - 2001
Adapted from the comprehensive, even epic, works Derivatives and Paul Wilmott on Quantitative Finance, Second Edition, it includes carefully selected chapters to give the student a thorough understanding of futures, options and numerical methods. Software is included to help visualize the most important ideas and to show how techniques are implemented in practice. There are comprehensive end-of-chapter exercises to test students on their understanding.
The Big Book of Dashboards: Visualizing Your Data Using Real-World Business Scenarios
Steve Wexler - 2017
It's great to have theory and evidenced-based research at your disposal, but what will you do when somebody asks you to make your dashboard 'cooler' by adding packed bubbles and donut charts?The expert authors have a combined 30-plus years of hands-on experience helping people in hundreds of organizations build effective visualizations. They have fought many 'best practices' battles and having endured bring an uncommon empathy to help you, the reader of this book, survive and thrive in the data visualization world.A well-designed dashboard can point out risks, opportunities, and more; but common challenges and misconceptions can make your dashboard useless at best, and misleading at worst. The Big Book of Dashboards gives you the tools, guidance, and models you need to produce great dashboards that inform, enlighten, and engage.
Introductory Graph Theory
Gary Chartrand - 1984
Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics — profusely illustrated — include: Mathematical Models, Elementary Concepts of Graph Theory, Transportation Problems, Connection Problems, Party Problems, Digraphs and Mathematical Models, Games and Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems, and Graphs and Other Mathematics. A useful Appendix covers Sets, Relations, Functions, and Proofs, and a section devoted to exercises — with answers, hints, and solutions — is especially valuable to anyone encountering graph theory for the first time. Undergraduate mathematics students at every level, puzzlists, and mathematical hobbyists will find well-organized coverage of the fundamentals of graph theory in this highly readable and thoroughly enjoyable book.
Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks
Arthur T. Benjamin - 1993
Get ready to amaze your friends—and yourself—with incredible calculations you never thought you could master, as renowned “mathemagician” Arthur Benjamin shares his techniques for lightning-quick calculations and amazing number tricks. This book will teach you to do math in your head faster than you ever thought possible, dramatically improve your memory for numbers, and—maybe for the first time—make mathematics fun.Yes, even you can learn to do seemingly complex equations in your head; all you need to learn are a few tricks. You’ll be able to quickly multiply and divide triple digits, compute with fractions, and determine squares, cubes, and roots without blinking an eye. No matter what your age or current math ability, Secrets of Mental Math will allow you to perform fantastic feats of the mind effortlessly. This is the math they never taught you in school.Also available as an eBook
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.