MARVEL MATHEMATICS FOR MHT-CET


HEMANT G. AINAPURE
    CONTAINS MCQ'S

A Textbook of Engineering Mathematics


N.P. Bali - 2010
    The salient features of the book are as follows: It exactly covers the prescribed syllabus. Nothing undesirable has been included and nothing essential has been left. Its approach is explanatory and language is lucid and communicable. The exposition of the subject matter is systematic and the students are better prepared to solve the problems. All fundamentals of the included topics are explained with a micro-analysis. Sufficient number of solved examples have been given to let the students understand the various skills necessary to solve the problems. These examples are well-graded. Unsolved exercises of multi-varieties have been given in a well-graded style. Attempting those on his own, will enable a student to create confidence and independence in him/her regarding the understanding of the subject. Daily life problems and practical applications have been incorporated in the body of the text. A large number of attractive and accurate figures have been drawn which enable a student to grasp the subject in an easier way. All the answers have been checked and verified. About The Author: N.P. Bali is a prolific author of over 100 books for degree and engineering students. He has been writing books for more than forty years. His books on the following topics are well known for their easy comprehension and lucid presentation: Algebra, Trigonometry, Differential Calculus, Integral Calculus, Real Analysis, Co-ordinate Geometry, Statics, Dynamics etc. Dr. Manish Goyal has been associated with

Good Math: A Geek's Guide to the Beauty of Numbers, Logic, and Computation


Mark C. Chu-Carroll - 2013
    There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular “Good Math” blog, you’ll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird.Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing.If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark’s book will both entertain and enlighten you.

Understanding Symbolic Logic


Virginia Klenk - 1983
    Each chapter, or unit, is divided into easily comprehended small "bites" that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics. For individuals interested in the formal study of logic.

Foundations of Complex Analysis


S. Ponnusamy - 2002
    Suitable for a two semester course in complex analysis, or as a supplementary text for an advanced course in function theory, this book aims to give students a good foundation of complex analysis and provides a basis for solving problems in mathematics, physics, engineering and many other sciences.

How to read and do proofs


Daniel Solow - 1982
    Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

Calculus: The Classic Edition


Earl W. Swokowski - 1991
    Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.

Naive Set Theory


Paul R. Halmos - 1960
    This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

The Pythagorean Solution


Joseph Badal - 2003
    This edition was rewritten, updated, and released on April 28, 2015.When recently-divorced American John Hammond arrives on the Aegean island of Samos, he is unaware of events that happened nearly seven decades earlier that will embroil him in death and violence, and change his life forever.Late one night he finds Greek fisherman Petros Vangelos mortally wounded in an alley. Vangelos gives Hammond a coded map before he expires. With that map, Hammond becomes the link to a Turkish tramp steamer named Sabiya that sank in a storm in 1945 with a fortune in gold and jewels aboard. Also on the Sabiya, in a waterproof safe, are documents that implicate a long-dead German SS Officer in the theft of tens of millions of dollars in valuables from Holocaust victims and the laundering of those valuables by the Nazi’s Swiss banker partner. That partnership helped build a huge banking enterprise that is now run by that Swiss banker’s son who will stop at nothing to prevent disclosure of his father’s crimes.Hammond’s visit to Samos quickly turns into a roller coaster ride on which he encounters violence, new friendships, and a woman he loves, all of which irrevocably alter the course of his life.The Pythagorean Solution is a thrilling, non-stop adventure that will make the reader want to reserve a seat on a flight to Samos.> This is a new release of a previously published edition.

Barron's SAT Subject Test Math Level 2


Richard Ku - 2008
    In chapters that follow, detailed topic reviews cover polynomial, trigonometric, exponential, logarithmic, and rational functions; coordinate and three-dimensional geometry; numbers and operations; data analysis, statistics, and probability; and graphing calculators, their operations and applications. Six full-length model tests with answers, explanations, and self-evaluation charts conclude this manual.

Denialism: How Irrational Thinking Hinders Scientific Progress, Harms the Planet, and Threatens Our Lives


Michael Specter - 2009
    In Denialism, New Yorker staff writer Michael Specter reveals that Americans have come to mistrust institutions and especially the institution of science more today than ever before. For centuries, the general view had been that science is neither good nor bad—that it merely supplies information and that new information is always beneficial. Now, science is viewed as a political constituency that isn’t always in our best interest. We live in a world where the leaders of African nations prefer to let their citizens starve to death rather than import genetically modified grains. Childhood vaccines have proven to be the most effective public health measure in history, yet people march on Washington to protest their use. In the United States a growing series of studies show that dietary supplements and “natural” cures have almost no value, and often cause harm. We still spend billions of dollars on them. In hundreds of the best universities in the world, laboratories are anonymous, unmarked, and surrounded by platoons of security guards—such is the opposition to any research that includes experiments with animals. And pharmaceutical companies that just forty years ago were perhaps the most visible symbol of our remarkable advance against disease have increasingly been seen as callous corporations propelled solely by avarice and greed. As Michael Specter sees it, this amounts to a war against progress. The issues may be complex but the choices are not: Are we going to continue to embrace new technologies, along with acknowledging their limitations and threats, or are we ready to slink back into an era of magical thinking? In Denialism, Specter makes an argument for a new Enlightenment, the revival of an approach to the physical world that was stunningly effective for hundreds of years: What can be understood and reliably repeated by experiment is what nature regarded as true. Now, at the time of mankind’s greatest scientific advances—and our greatest need for them—that deal must be renewed.

Incompleteness: The Proof and Paradox of Kurt Gödel


Rebecca Goldstein - 2005
    "A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.

On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Kurt Gödel - 1992
    Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.

Elementary Solid State Physics: Principles and Applications


M. Ali Omar - 1975
    I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.

Real Analysis


H.L. Royden - 1963
    Dealing with measure theory and Lebesque integration, this is an introductory graduate text.