Sams Teach Yourself C++ in One Hour a Day


Siddhartha Rao - 2008
    Master the fundamentals of C++ and object-oriented programming Understand how C++11 features help you write compact and efficient code using concepts such as lambda expressions, move constructors, and assignment operators Learn the Standard Template Library, including containers and algorithms used in most real-world C++ applications Test your knowledge and expertise using exercises at the end of every lesson Learn on your own time, at your own pace: No previous programming experience required Learn C++11, object-oriented programming, and analysis Write fast and powerful C++ programs, compile the source code with a gcc compiler, and create executable files Use the Standard Template Library's (STL) algorithms and containers to write feature-rich yet stable C++ applications Develop sophisticated programming techniques using lambda expressions, smart pointers, and move constructors Learn to expand your program's power with inheritance and polymorphism Master the features of C++ by learning from programming experts Learn C++11 features that allow you to program compact and high-performance C++ applications TABLE OF CONTENTSPART I: THE BASICS LESSON 1: Getting Started with C++11 LESSON 2: The Anatomy of a C++ Program LESSON 3: Using Variables, Declaring Constants LESSON 4: Managing Arrays and Strings LESSON 5: Working with Expressions, Statements, and Operators LESSON 6: Controlling Program Flow LESSON 7: Organizing Code with Functions LESSON 8: Pointers and References Explained PART II: FUNDAMENTALS OF OBJECT-ORIENTED C++ PROGRAMMING LESSON 9: Classes and Objects LESSON 10: Implementing Inheritance LESSON 11: Polymorphism LESSON 12: Operator Types and Operator Overloading LESSON 13: Casting Operators LESSON 14: An Introduction to Macros and Templates PART III: LEARNING THE STANDARD TEMPLATE LIBRARY (STL) LESSON 15: An Introduction to the Standard Template LibraryLESSON 16: The STL String ClassLESSON 17: STL Dynamic Array ClassesLESSON 18: STL list and forward_listLESSON 19: STL Set ClassesLESSON 20: STL Map ClassesPART IV: MORE STL LESSON 21: Understanding Function ObjectsLESSON 22: C++11 Lambda ExpressionsLESSON 23: STL AlgorithmsLESSON 24: Adaptive Containers: Stack and QueueLESSON 25: Working with Bit Flags Using STLPART V: ADVANCED C++ CONCEPTS LESSON 26: Understanding Smart PointersLESSON 27: Using Streams for Input and OutputLESSON 28: Exception HandlingLESSON 29: Going Forward APPENDIXES A: Working with Numbers: Binary and Hexadecimal B: C++ Keywords C: Operator Precedence D: Answers E: ASCII Codes

Discrete Mathematical Structures


Bernard Kolman - 1995
    It covers areas such as fundamentals, logic, counting, relations and digraphs, trees, topics in graph theory, languages and finite-state machines, and groups and coding.

Adventures of the Starship Satori: Book 1-6 Complete Library


Kevin McLaughlin - 2019
    Beth Wynn figured she'd never see her ex-husband again, until the adventure of a lifetime brought them back together. John Carraway, billionaire businessman with a secret: an ancient starship with an intact wormhole drive. Charline Foster, rogue hacker with a brilliant past. Andrew Wakefield, former elite soldier and the son John never had. Together they would embark on a journey that launched humanity into the stars, and face perils that threaten not only their lives, but the future of everyone on Earth.

Cassandra: The Definitive Guide


Eben Hewitt - 2010
    Cassandra: The Definitive Guide provides the technical details and practical examples you need to assess this database management system and put it to work in a production environment.Author Eben Hewitt demonstrates the advantages of Cassandra's nonrelational design, and pays special attention to data modeling. If you're a developer, DBA, application architect, or manager looking to solve a database scaling issue or future-proof your application, this guide shows you how to harness Cassandra's speed and flexibility.Understand the tenets of Cassandra's column-oriented structureLearn how to write, update, and read Cassandra dataDiscover how to add or remove nodes from the cluster as your application requiresExamine a working application that translates from a relational model to Cassandra's data modelUse examples for writing clients in Java, Python, and C#Use the JMX interface to monitor a cluster's usage, memory patterns, and moreTune memory settings, data storage, and caching for better performance

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Life After Google: The Fall of Big Data and the Rise of the Blockchain Economy


George Gilder - 2018
    Gilder says or writes is ever delivered at anything less than the fullest philosophical decibel... Mr. Gilder sounds less like a tech guru than a poet, and his words tumble out in a romantic cascade." “Google’s algorithms assume the world’s future is nothing more than the next moment in a random process. George Gilder shows how deep this assumption goes, what motivates people to make it, and why it’s wrong: the future depends on human action.” — Peter Thiel, founder of PayPal and Palantir Technologies and author of Zero to One: Notes on Startups, or How to Build the Future The Age of Google, built on big data and machine intelligence, has been an awesome era. But it’s coming to an end. In Life after Google, George Gilder—the peerless visionary of technology and culture—explains why Silicon Valley is suffering a nervous breakdown and what to expect as the post-Google age dawns. Google’s astonishing ability to “search and sort” attracts the entire world to its search engine and countless other goodies—videos, maps, email, calendars….And everything it offers is free, or so it seems. Instead of paying directly, users submit to advertising. The system of “aggregate and advertise” works—for a while—if you control an empire of data centers, but a market without prices strangles entrepreneurship and turns the Internet into a wasteland of ads. The crisis is not just economic. Even as advances in artificial intelligence induce delusions of omnipotence and transcendence, Silicon Valley has pretty much given up on security. The Internet firewalls supposedly protecting all those passwords and personal information have proved hopelessly permeable. The crisis cannot be solved within the current computer and network architecture. The future lies with the “cryptocosm”—the new architecture of the blockchain and its derivatives. Enabling cryptocurrencies such as bitcoin and ether, NEO and Hashgraph, it will provide the Internet a secure global payments system, ending the aggregate-and-advertise Age of Google. Silicon Valley, long dominated by a few giants, faces a “great unbundling,” which will disperse computer power and commerce and transform the economy and the Internet. Life after Google is almost here.   For fans of "Wealth and Poverty," "Knowledge and Power," and "The Scandal of Money."

Bayes Theorem: A Visual Introduction For Beginners


Dan Morris - 2016
    Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.

Research Methods and Statistics in Psychology


Hugh Coolican - 1990
    The book assumes no prior knowledge, taking the student through every stage of their research project in manageable steps. Advice on planning and conducting studies, analyzing data, and writing up practical reports is given, and examples are provided, as well as advice on how to report results in conventional (APA) style. Unlike other introductory texts, there is practical guidance on qualitative research, as well as discussion of issues of bias, interpretation, and variance. Content on qualitative methods has been expanded for the fifth edition and now includes additional material on widely used methods, such as grounded theory, thematic analysis, interpretive phenomenological analysis (IPA), and discourse analysis. The book provides clear coverage of statistical procedures, and includes everything needed at an undergraduate level from nominal level tests, to multi-factorial ANOVA designs, multiple regression, and log linear analysis. In addition, the book provides detailed and illustrated SPSS textbook. Each chapter contains a self-test glossary, key terms, and exercises, ensuring that key concepts have been understood. Students are further supported. Students are further supported by an accompanying website that provides additional exercises, revision flash cards, links to further reading, and data for use with SPSS. The website will also include updated coverage of SPSS should a new version be launched. The bestselling research methods text for over a decade, Research Methods and Statistics in Psychology remains an invaluable resource for students of psychology throughout their studies.

Statistical Analysis with Excel for Dummies


Joseph Schmuller - 2005
    mean, margin of error, standard deviation, permutations, and correlations-all using Excel

Big Data: A Revolution That Will Transform How We Live, Work, and Think


Viktor Mayer-Schönberger - 2013
    “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com

The Cartoon Guide to Statistics


Larry Gonick - 1993
    Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Do Dice Play God?: The Mathematics of Uncertainty


Ian Stewart - 2019
    We want to be able to figure out who will win an election, if the stock market will crash, or if a suspect definitely committed a crime. But the odds are not in our favor. Life is full of uncertainty --- indeed, scientific advances indicate that the universe might be fundamentally inexact --- and humans are terrible at guessing. When asked to predict the outcome of a chance event, we are almost always wrong.Thankfully, there is hope. As award-winning mathematician Ian Stewart reveals, over the course of history, mathematics has given us some of the tools we need to better manage the uncertainty that pervades our lives. From forecasting, to medical research, to figuring out how to win Let's Make a Deal, Do Dice Play God? is a surprising and satisfying tour of what we can know, and what we never will.

Data Points: Visualization That Means Something


Nathan Yau - 2013
    In Data Points: Visualization That Means Something, author Nathan Yau presents an intriguing complement to his bestseller Visualize This, this time focusing on the graphics side of data analysis. Using examples from art, design, business, statistics, cartography, and online media, he explores both standard-and not so standard-concepts and ideas about illustrating data.Shares intriguing ideas from Nathan Yau, author of Visualize This and creator of flowingdata.com, with over 66,000 subscribers Focuses on visualization, data graphics that help viewers see trends and patterns they might not otherwise see in a table Includes examples from the author's own illustrations, as well as from professionals in statistics, art, design, business, computer science, cartography, and more Examines standard rules across all visualization applications, then explores when and where you can break those rules Create visualizations that register at all levels, with Data Points: Visualization That Means Something.

Engineering Thermodynamics


P.K. Nag - 1982