Book picks similar to
Measurement by Paul Lockhart


math
mathematics
science
non-fiction

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Cosmos


Carl Sagan - 1980
    In the book, Sagan explores 15 billion years of cosmic evolution and the development of science and civilization. Cosmos traces the origins of knowledge and the scientific method, mixing science and philosophy, and speculates to the future of science. The book also discusses the underlying premises of science by providing biographical anecdotes about many prominent scientists throughout history, placing their contributions into the broader context of the development of modern science.The book covers a broad range of topics, comprising Sagan's reflections on anthropological, cosmological, biological, historical, and astronomical matters from antiquity to contemporary times. Sagan reiterates his position on extraterrestrial life—that the magnitude of the universe permits the existence of thousands of alien civilizations, but no credible evidence exists to demonstrate that such life has ever visited earth.

The Colossal Book of Mathematics


Martin Gardner - 2001
    Gardner's array of absorbing puzzles and mind-twisting paradoxes opens mathematics up to the world at large, inspiring people to see past numbers and formulas and experience the application of mathematical principles to the mysterious world around them. With articles on topics ranging from simple algebra to the twisting surfaces of Mobius strips, from an endless game of Bulgarian solitaire to the unreachable dream of time travel, this volume comprises a substantial and definitive monument to Gardner's influence on mathematics, science, and culture.In its twelve sections, The Colossal Book of Math explores a wide range of areas, each startlingly illuminated by Gardner's incisive expertise. Beginning with seemingly simple topics, Gardner expertly guides us through complicated and wondrous worlds: by way of basic algebra we contemplate the mesmerizing, often hilarious, linguistic and numerical possibilities of palindromes; using simple geometry, he dissects the principles of symmetry upon which the renowned mathematical artist M. C. Escher constructs his unique, dizzying universe. Gardner, like few thinkers today, melds a rigorous scientific skepticism with a profound artistic and imaginative impulse. His stunning exploration of "The Church of the Fourth Dimension," for example, bridges the disparate worlds of religion and science by brilliantly imagining the spatial possibility of God's presence in the world as a fourth dimension, at once "everywhere and nowhere."With boundless wisdom and his trademark wit, Gardner allows the reader to further engage challenging topics like probability and game theory which have plagued clever gamblers, and famous mathematicians, for centuries. Whether debunking Pascal's wager with basic probability, making visual music with fractals, or uncoiling a "knotted doughnut" with introductory topology, Gardner continuously displays his fierce intelligence and gentle humor. His articles confront both the comfortingly mundane—"Generalized Ticktacktoe" and "Sprouts and Brussel Sprouts"—and the quakingly abstract—"Hexaflexagons," "Nothing," and "Everything." He navigates these staggeringly obscure topics with a deft intelligence and, with addendums and suggested reading lists, he informs these classic articles with new insight.Admired by scientists and mathematicians, writers and readers alike, Gardner's vast knowledge and burning curiosity reveal themselves on every page. The culmination of a lifelong devotion to the wonders of mathematics, The Colossal Book of Mathematics is the largest and most comprehensive math book ever assembled by Gardner and remains an indispensable volume for the amateur and expert alike.

The Man Who Knew Infinity: A Life of the Genius Ramanujan


Robert Kanigel - 1991
    Hardy, in the years before World War I. Through their eyes the reader is taken on a journey through numbers theory. Ramanujan would regularly telescope 12 steps of logic into two - the effect is said to be like Dr Watson in the train of some argument by Sherlock Holmes. The language of symbols and infinitely large (and small) regions of mathematics should be rendered with clarity for the general reader.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.

This Idea Must Die: Scientific Theories That Are Blocking Progress


John Brockman - 2015
    In the past, discoveries often had to wait for the rise of the next generation to see questions in a new light and let go of old truisms. Today, in a world that is defined by a rapid rate of change, staying on the cutting edge has as much to do with shedding outdated notions as adopting new ones. In this spirit, John Brockman, publisher of the online salon Edge.org ("the world's smartest website"—The Guardian), asked 175 of the world's most influential scientists, economists, artists, and philosophers: What scientific idea is ready for retirement?Jared Diamond explores the diverse ways that new ideas emerge * Nassim Nicholas Taleb takes down the standard deviation * Richard Thaler and novelist Ian McEwan reveal the usefulness of "bad" ideas * Steven Pinker dismantles the working theory of human behavior * Richard Dawkins renounces essentialism * Sherry Turkle reevaluates our expectations of artificial intelligence * Physicist Andrei Linde suggests that our universe and its laws may not be as unique as we think * Martin Rees explains why scientific understanding is a limitless goal * Alan Guth rethinks the origins of the universe * Sam Harris argues that our definition of science is too narrow * Nobel Prize winner Frank Wilczek disputes the division between mind and matter * Lawrence Krauss challenges the notion that the laws of physics were preordained * plus contributions from Daniel Goleman, Mihaly Csikszentmihalyi, Nicholas Carr, Rebecca Newberger Goldstein, Matt Ridley, Stewart Brand, Sean Carroll, Daniel C. Dennett, Helen Fisher, Douglas Rushkoff, Lee Smolin, Kevin Kelly, Freeman Dyson, and others.

The Millennium Problems


Keith Devlin - 2002
    For mathematicians, physicists, engineers, and everyone else with an interest in mathematics' cutting edge, The Millennium Problems is the definitive account of a subject that will have a very long shelf life.

Visual Complex Analysis


Tristan Needham - 1997
    Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Just Six Numbers: The Deep Forces That Shape the Universe


Martin J. Rees - 1999
    There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

Introduction to Linear Algebra


Gilbert Strang - 1993
    Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.

Unknown Quantity: A Real and Imaginary History of Algebra


John Derbyshire - 2006
    As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.

Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension


Michio Kaku - 1994
    Indeed, many physicists today believe that there are other dimensions beyond the four of our space-time, and that a unified vision of the various forces of nature can be achieved, if we consider that everything we see around us, from the trees to the stars are nothing but vibrations in hyperspace. Hyperspace theory - and its more recent derivation, superstring theory - is the eye of this revolution. In this book, Michio Kaku shows us a fascinating panorama, which completely changes our view of the cosmos, and takes us on a dazzling journey through new dimensions: wormholes connecting parallel universes, time machines, "baby universes" and more. Similar wonders are emerging in some pages in which everything is explained with elegant simplicity and where the mathematical formulation is replaced by imaginative illustrations that allow the problems to be visualized. The result is a very entertaining and surprising book, which even leaves behind the greatest fantasies of the old science fiction authors.

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

The Nothing That Is: A Natural History of Zero


Robert M. Kaplan - 1999
    As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.