Book picks similar to
The Science of Energy: Resources and Power Explained by Michael E. Wysession
science
non-fiction
audible
the-great-courses
Redefining Reality: The Intellectual Implications of Modern Science
Steven Gimbel - 2015
For example, the matter that comprises all stars, planets, and living things turns out to be just a fraction of what actually exists. Moreover, we think that we control our actions, but data analytics can predict, with astonishing accuracy, when we will wake up, what we will buy, and even whom we will marry.The quest to pin down what's real and what's illusory is both philosophical and scientific, a metaphysical search for ultimate reality that goes back to the ancient Greeks. For the last 400 years, this search has been increasingly guided by scientists, who create theories and test them in order to define and redefine reality. And we have developed the power to alter our own reality in major ways - to defeat diseases, compensate for disabilities, and augment our intellect with computers. Where is that trend going?Experience the thrill of this exciting quest in 36 wide-ranging lectures that touch on many aspects of the ceaseless search for reality. From the birth of the universe to brain science, discover that separating the real from the illusory is an exhilarating intellectual adventure.Scientists and philosophers are not alone in grappling, at an intellectual level, with reality. Some of the most accessible interpretations are by painters, novelists, filmmakers, and other artists whose works not only draw on the latest discoveries but also sometimes inspire them. Explore examples such as Alice in Wonderland, pointillism, cubism, surrealism, and reality TV.And since dealing with reality is an experience we all share, this course is designed for people of all backgrounds.
The Science of Sci-Fi: From Warp Speed to Interstellar Travel
Erin Macdonald - 2019
While not every story is concerned with the hard science behind space travel and other futuristic ventures, fiction can give listeners an amazing insight into what people could be capable of and what people dream of doing.In the 10 lectures of The Science of Sci-Fi: From Warp Speed to Interstellar Travel, Professor Erin Macdonald interweaves real science and the achievements of the imagination to reveal the truth that underlies favorite stories and sheds light on what the future may hold. From faster-than-light travel to journeys through time itself, science fiction makes humanity seem limitless. So, what scientific boundaries are people pushing against while seeking to fly among the stars?Listening Length: 3 hours and 59 minutes
Earth's Changing Climate
Richard Wolfson - 2007
Is Earth Warming? 2. Butterflies, Glaciers, and Hurricanes 3. Ice Ages and Beyond 4. In the Greenhouse 5. A Tale of Three Planets 6. Global Recycling 7. The Human Factor 8. Computing the Future 9. Impacts of Climate Change 10. Energy and Climate 11. EnergyResources and Alternatives 12. Sustainable Futures?
Particle Physics For Non Physicists: A Tour Of The Microcosmos
Steven Pollock - 2003
And you'll also learn the "rules of the game" - the forces that drive those particles and the ways in which they interact - that underlie the workings of the universe.The lectures have been designed to be enriching for everyone, regardless of scientific background or mathematical ability. Virtually all you'll need as you enter this fascinating world are your curiosity, common sense, and, as Professor Pollock notes, "an open mind for the occasional quantum weirdness." As you move through the lectures, you'll also gain a knowledge of how those particles fit into perhaps the greatest scientific theory of all time: the Standard Model of particle physics; a grasp of key terms like "gauge symmetry," "quantum chromodynamics," and "unified quantum field Theory;" and an appreciation of how particle physics fits in with other branches of physics - including cosmology and quantum mechanics - to create our overall understanding of nature.
The Higgs Boson and Beyond
Sean Carroll - 2015
The hunt for the Higgs was the subject of wide media attention due to the cost of the project, the complexity of the experiment, and the importance of its result. And, when it was announced with great fanfare in 2012 that physicists has succeeded in creating and identifying this all-important new particle, the discovery was celebrated around the world.And yet, virtually no one who read that news could tell you what, exactly, the Higgs boson was, and why its discovery was so important that we had to spend 10 billion dollars and build the single largest and most complex device in the history of mankind in order to find it. When you understand the details, this story ranks as one of the most thrilling in the history of modern science.Award-winning theoretical physicist Sean Carroll, a brilliant researcher as well as a gifted speaker who excels in explaining scientific concepts to the public, is perfectly positioned to tell this story. In this 12-lecture masterpiece of scientific reporting, you'll learn everything you need to know to fully grasp the significance of this discovery, including the basics of quantum mechanics; the four forces that comprise the Standard Model of particle physics; how these forces are transmitted by fields and particles; and the importance of symmetry in physics.You also get an in-depth view of the Large Hadron Collider - the largest machine ever built, and the device responsible for finally revealing the concept of the Higgs boson as reality. By the end, you'll understand how the Higgs boson verifies the final piece in the Standard Model of particle physics, and how its discovery validates and deepens our understanding of the universe.
The Industrial Revolution
Patrick N. Allitt - 2014
In this course, The Great Courses partners with the Smithsonian - one of the world's most storied and exceptional educational institutions - to examine the extraordinary events of this period and uncover the far-reaching impact of this incredible revolution. Over the course of 36 thought-provoking lectures, longtime Great Courses favorite Professor Allitt introduces you to the inventors, businessmen, and workers responsible for transforming virtually every aspect of our lives and fueling one of the greatest periods of innovation in human history. The technological achievements of this era are nothing short of astonishing. Thanks to inventions such as the steam engine and processes such as large-scale iron smelting, industrial entrepreneurs were able to mechanize labor, which allowed for a host of new efficiencies such as division of labor, mass production, and global distribution. You'll discover the science behind some of the most astounding inventions in modern history, including the spinning jenny, the incandescent light bulb, and the computer processor. You'll learn how these inventions came about and consider what effects these technologies had on every aspect of human life. Get an inside look at the history of industrial innovation and explore the lives of engineers, inventors, architects, and designers responsible for changing the world - as well as ordinary workers who lost their livelihoods to new technologies and suffered from unsafe working conditions. The story of the Industrial Revolution is complex, and these lectures will leave you with a new appreciation for the amazing human achievements all around us.
Thinking About Capitalism
Jerry Z. Muller - 2008
This is a set of eighteen audio CDs and an accompanying softcover course guidebook.Contains parts 1 - 3 of the Thinking About Capitalism course.
The Inexplicable Universe: Unsolved Mysteries
Neil deGrasse Tyson - 2012
And with the advent of modern science, great minds have turned to testing and experimentation rather than mere thought as a way of approaching and grappling with some of the universe's most pressing and vexing dilemmas. So what is our latest picture of some of the most inexplicable features of the universe? What still remains to be uncovered? What are some of the next avenues of exploration for today's chemists, physicists, biologists, and astronomers? Pondering the answers to these and other questions is a great way to appreciate the grandeur and complexity of the world around you, better understand and discuss news and developments in science, and spark further interest in some of science's many exciting areas of study. "We know a lot about the universe. But there's even more that we don't know,"says astrophysicist and Professor Neil deGrasse Tyson, director of the Hayden Planetarium, an award-winning lecturer, and one of the world's foremost experts on the secrets of the universe. And his course The Inexplicable Universe: Unsolved Mysteries is the perfect gateway into this mind-bending and eye-opening subject. Each of these six self-contained lectures is a marvelous journey to the frontiers of the known (and unknown) universe and introduces you to tantalizing questions being addressed by the world's top scientists. Undeniably engaging and fascinating, this lecture series is a wonderful entrée to scientific pursuits that lie at the very heart of the history and nature of our universe. An Informed Scientific Conversation Central to The Inexplicable Universe is the way it takes you deep into hidden layers of the universe in a manner that is extremely accessible. Rather than a stern lecture given before a podium complete with confusing mathematics, Professor Tyson's lectures have the feel of an informed conversation that manages to be both thorough and easy to grasp. With each of the inexplicable mysteries he lays bare for you, Professor Tyson introduces you to the history behind it, lays out the science that has helped us grasp it, explains what researchers have discovered to date, and reveals what we have yet to discover. And while the topics explore subjects in everything from quantum mechanics to cosmology to string theory, you'll never feel overwhelmed by what you're learning. In fact, you're more likely to find yourself intrigued by just how much we know-and curious about what the near future will possibly reveal. Explore Fascinating Territory So what territory will you chart in this course? Here are some of the inexplicable ideas you'll investigate in these lectures. Neutrinos: Discovered in 1956, these fast-moving, ghostlike particles are made in abundance in the sun's core. They hardly interact with matter; it takes a light-year's worth of lead (5.8 trillion miles) to stop a neutrino. Not only that, but 65 billion neutrinos pass through every centimeter of your body that's facing the sun every second of every day. String theory: This astounding theory offers the hope of unifying all the particles and forces of physics. In the past several decades since the dawn of string theory, it's been imagined that all the fundamental particles we see and measure are just the manifestation in our dimension of strings vibrating in higher dimensions and at different frequencies. Quantum foam: This idea posits that when the fabric of space and time is so tightly curved on itself, space-time is less a smooth curve and more like the froth on a latte. In this state of matter and energy, quantum fluctuations can spawn entire universes, each with slightly different laws of physics within them! In addition, you'll also get a peek at what it would be like to travel through a black hole, ponder the possibility that life on Earth originated in debris from Mars, probe the supposed existence of multiple universes, and even imagine the possible end of the universe itself. A One-on-One Chat with a Renowned Science Educator Professor Tyson is renowned throughout the scientific community and the media for his vast knowledge, his penetrating insights, and his amazing ability to make even the most intimidating areas of science accessible, engaging, and-most of all-enjoyable. He brings the same inviting tone and sharp intellect to The Inexplicable Universe as he does to his range of media appearances on popular television programs. Due to its unique subject matter The Inexplicable Universe takes a highly visual approach. Many of the fascinating subjects in the course, such as black holes, string theory, and multiple universes are best demonstrated visually and Professor Tyson's lectures feature expertly crafted computer animations, explanatory diagrams, high resolution photographs, and other instructive visual elements. In order to better explain to you some of the grand, intricate ideas being discussed, Professor Tyson personally interacts with many of these animations and graphics using greenscreen technology. Please note that, due to the highly visual nature of The Inexplicable Universe, the course does not come with a guidebook. We did not believe a simple book could adequately convey the information in the course, and rather than make a guidebook that did not do the course justice, we decided to not offer one. However, we believe that you will be very excited by how we produced this course and will find it to be an enriching and fulfilling experience in your educational journey.
Humble Pi: A Comedy of Maths Errors
Matt Parker - 2019
Most of the time this math works quietly behind the scenes . . . until it doesn't. All sorts of seemingly innocuous mathematical mistakes can have significant consequences.Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean.Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.
How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need
Bill Gates - 2021
Gates says, "we can work on a local, national, and global level to build the technologies, businesses, and industries to avoid the worst impacts of climate change." His interest in climate change is a natural outgrowth of the efforts by his foundation to reduce poverty and disease. Climate change, according to Gates, will have the biggest impact on the people who have done the least to cause it. As a technologist, he has seen first-hand how innovation can change the world. By investing in research, inventing new technologies, and by deploying them quickly at large scale, Gates believes climate change can be addressed in meaningful ways. According to Gates, "to prevent the worst effects of climate change, we have to get to net-zero emissions of greenhouse gases. This problem is urgent, and the debate is complex, but I believe we can come together to invent new carbon-zero technologies, deploy the ones we have, and ultimately avoid a climate catastrophe."
The Perfectionists: How Precision Engineers Created the Modern World
Simon Winchester - 2018
At the dawn of the Industrial Revolution in eighteenth-century England, standards of measurement were established, giving way to the development of machine tools—machines that make machines. Eventually, the application of precision tools and methods resulted in the creation and mass production of items from guns and glass to mirrors, lenses, and cameras—and eventually gave way to further breakthroughs, including gene splicing, microchips, and the Hadron Collider.Simon Winchester takes us back to origins of the Industrial Age, to England where he introduces the scientific minds that helped usher in modern production: John Wilkinson, Henry Maudslay, Joseph Bramah, Jesse Ramsden, and Joseph Whitworth. It was Thomas Jefferson who later exported their discoveries to the fledgling United States, setting the nation on its course to become a manufacturing titan. Winchester moves forward through time, to today’s cutting-edge developments occurring around the world, from America to Western Europe to Asia.As he introduces the minds and methods that have changed the modern world, Winchester explores fundamental questions. Why is precision important? What are the different tools we use to measure it? Who has invented and perfected it? Has the pursuit of the ultra-precise in so many facets of human life blinded us to other things of equal value, such as an appreciation for the age-old traditions of craftsmanship, art, and high culture? Are we missing something that reflects the world as it is, rather than the world as we think we would wish it to be? And can the precise and the natural co-exist in society?
Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World
Mark Miodownik - 2013
Why is glass see-through? What makes elastic stretchy? Why does a paper clip bend? Why does any material look and behave the way it does? These are the sorts of questions that Mark Miodownik a globally-renowned materials scientist has spent his life exploring In this book he examines the materials he encounters in a typical morning, from the steel in his razor and the graphite in his pencil to the foam in his sneakers and the concrete in a nearby skyscraper.
Energy: A Human History
Richard Rhodes - 2018
Ultimately, the history of these challenges tells the story of humanity itself. Through an unforgettable cast of characters, Pulitzer Prize-winning author Richard Rhodes explains how wood gave way to coal and coal made room for oil, as we now turn to natural gas, nuclear power, and renewable energy. Rhodes looks back on five centuries of progress, through such influential figures as Queen Elizabeth I, King James I, Benjamin Franklin, Herman Melville, John D. Rockefeller, and Henry Ford. In Energy, Rhodes highlights the successes and failures that led to each breakthrough in energy production; from animal and waterpower to the steam engine, from internal-combustion to the electric motor. He addresses how we learned from such challenges, mastered their transitions, and capitalized on their opportunities. Rhodes also looks at the current energy landscape, with a focus on how wind energy is competing for dominance with cast supplies of coal and natural gas. He also addresses the specter of global warming, and a population hurtling towards ten billion by 2100. Human beings have confronted the problem of how to draw life from raw material since the beginning of time. Each invention, each discovery, each adaptation brought further challenges, and through such transformations, we arrived at where we are today. In Rhodes’s singular style, Energy details how this knowledge of our history can inform our way tomorrow.
Thinking about Cybersecurity: From Cyber Crime to Cyber Warfare
Paul Rosenzweig - 2013
Telecommunications, commercial and financial systems, government operations, food production - virtually every aspect of global civilization now depends on interconnected cyber systems to operate; systems that have helped advance medicine, streamline everyday commerce, and so much more. Thinking about Cybersecurity: From Cyber Crime to Cyber Warfare is your guide to understanding the intricate nature of this pressing subject. Delivered by cybersecurity expert and professor Paul Rosenzweig, these 18 engaging lectures will open your eyes to the structure of the Internet, the unique dangers it breeds, and the ways we’re learning how to understand, manage, and reduce these dangers.In addition, Professor Rosenzweig offers sensible tips on how best to protect yourself, your network, or your business from attack or data loss.Disclaimer: The views expressed in this course are those of the professor and do not necessarily reflect the position or policy of the U.S. Department of Homeland Security, the U.S. Department of Defense, or the U.S. government. Disclaimer: Please note that this recording may include references to supplemental texts or print references that are not essential to the program and not supplied with your purchase.©2013 The Teaching Company, LLC (P)2013 The Great Courses
The Story of Human Language
John McWhorter - 2004
There are good reasons that language fascinates us so. It not only defines humans as a species, placing us head and shoulders above even the most proficient animal communicators, but it also beguiles us with its endless mysteries. For example: * How did different languages come to be? * Why isn’t there just a single language? * How does a language change, and when it does, is that change indicative of decay or growth? * How does a language become extinct? Dr. John McWhorter, one of America’s leading linguists and a frequent commentator on network television and National Public Radio, addresses these and other questions as he takes you on an in-depth, 36-lecture tour of the development of human language, showing how a single tongue spoken 150,000 years ago has evolved into the estimated 6,000 languages used around the world today.An accomplished scholar, Professor McWhorter is also a skilled popularizer, whose book The Power of Babel was called "startling, provocative, and remarkably entertaining," by the San Diego Union-Tribune.The London Times called him "a born teacher." And Steven Pinker, best known as the author of The Language Instinct, offered this praise for the book: "McWhorter’s arguments are sharply reasoned, refreshingly honest, and thoroughly original."Course Lecture Titles1. What Is Language? 2. When Language Began 3. How Language Changes—Sound Change 4. How Language Changes—Building New Material 5. How Language Changes—Meaning and Order 6. How Language Changes—Many Directions 7. How Language Changes—Modern English 8. Language Families—Indo-European 9. Language Families—Tracing Indo-European 10. Language Families—Diversity of Structures 11. Language Families—Clues to the Past 12. The Case Against the World’s First Language 13. The Case For the World’s First Language 14. Dialects—Subspecies of Species 15. Dialects—Where Do You Draw the Line? 16. Dialects—Two Tongues in One Mouth 17. Dialects—The Standard as Token of the Past 18. Dialects—Spoken Style, Written Style 19. Dialects—The Fallacy of Blackboard Grammar 20. Language Mixture—Words 21. Language Mixture—Grammar 22. Language Mixture—Language Areas 23. Language Develops Beyond the Call of Duty 24. Language Interrupted 25. A New Perspective on the Story of English 26. Does Culture Drive Language Change? 27. Language Starts Over—Pidgins 28. Language Starts Over—Creoles I 29. Language Starts Over—Creoles II 30. Language Starts Over—Signs of the New 31. Language Starts Over—The Creole Continuum 32. What Is Black English? 33. Language Death—The Problem 34. Language Death—Prognosis 35. Artificial Languages 36. Finale—Master Class