Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Neuroanatomy


Alan R. Crossman - 1995
    It avoids overburdening the reader with topographical detail that is unnecessary for the medical student. Minimum assumptions are made of existing knowledge of the subject.'Key point' boxes for reinforcement and quick revision Glossary of important terms 'Clinical detail' boxes closely integrated with relevant neuroanatomyComplete revision and updating of text. Revision nad expansion of summary chapter, providing overview of entire subject. Clinical material updated to reflect current prevalence of neurological disease. Artwork entirely redrawn for improved clarity and closer integration with text.

Applied Multivariate Statistical Analysis


Richard A. Johnson - 1982
    of Wisconsin-Madison) and Wichern (Texas A&M U.) present the newest edition of this college text on the statistical methods for describing and analyzing multivariate data, designed for students who have taken two or more statistics courses. The fifth edition includes the addition of seve

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

The Ultimate Fate Of The Universe


Jamal Nazrul Islam - 1983
    To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.

Power System Analysis and Design [With CDROM]


J. Duncan Glover - 2001
    Like earlier editions of the book, physical concepts are highlighted while also giving necessary attention to math-ematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. Beginning in Ch. 3, students are introduced to new concepts critical to analyzing power systems, including coverage of both balanced and unbalanced operating conditions. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field. Each book now contains a CD with Power World software. This package is commonly used in industry and will enable students to analyze and simulate power systems. The authors use the software to extend, rather than replace, the fully worked examples provided in previous editions. In the new edition, each Power World Simulator example includes a fully worked hand solution of the problem along with a Power World Simulator case (except when the problem size makes it impractical). The new edition also contains updated case studies on recent trends in the Power Systems field, including coverage of deregulation, increased power demand, economics, and alternative sources of energy. These case studies are derived from real life situations.

Programming in Haskell


Graham Hutton - 2006
    This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.

Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems


Loyd V. Allen Jr. - 2004
    Each chapter in this revised Eighth Edition includes two case studies—one clinical and one pharmaceutical. Content coincides with the CAPE, APhA, and NAPLEX competencies.This edition includes updated drug information and expanded sections on parenterals, excipients, liposomes, and biopharmaceutics. Coverage incorporates all new dosage forms in the current USP Pharmacopoeia-National Formulary. Capsules and tablets are now covered in separate chapters. The thoroughly revamped illustration program includes new product and manufacturing equipment photographs.

An Introduction to Mechanics


Daniel Kleppner - 1973
    Intended for undergraduate students with foundation skills in mathematics and a deep interest in physics, it systematically lays out the principles of mechanics: vectors, Newton's laws, momentum, energy, rotational motion, angular momentum and noninertial systems, and includes chapters on central force motion, the harmonic oscillator, and relativity. Numerous worked examples demonstrate how the principles can be applied to a wide range of physical situations, and more than 600 figures illustrate methods for approaching physical problems. The book also contains over 200 challenging problems to help the student develop a strong understanding of the subject. Password-protected solutions are available for instructors at www.cambridge.org/9780521198219.

Calculus


Ron Larson - 1999
    It has been widely praised by a generation of users for its solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. Each title is just one component in a comprehensive calculus course program that carefully integrates and coordinates print, media, and technology products for successful teaching and learning.

Feedback Control of Dynamic Systems


Gene F. Franklin - 1986
    Highlights of the book include realistic problems and examples from a wide range of application areas. New to this edition are: much sharper pedagogy; an increase in the number of examples; more thorough development of the concepts; a greater range of homework problems; a greater number and variety of worked out examples; expanded coverage of dynamics modelling and Laplace transform topics; and integration of MATLAB, including many examples that are formatted in MATLAB.

Advanced Engineering Mathematics


K.A. Stroud - 2003
    You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Computational Complexity


Christos H. Papadimitriou - 1993
    It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.

The Swift Programming Language


Apple Inc. - 2014
    Swift builds on the best of C and Objective-C, without the constraints of C compatibility. Swift adopts safe programming patterns and adds modern features to make programming easier, more flexible, and more fun. Swift’s clean slate, backed by the mature and much-loved Cocoa and Cocoa Touch frameworks, is an opportunity to reimagine how software development works.