Book picks similar to
Combinatorial Optimization: Theory and Algorithms by Bernhard Korte
mathematics
hard-science
maths
algorithms
Python Algorithms: Mastering Basic Algorithms in the Python Language
Magnus Lie Hetland - 2010
Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.
Numerical Optimization
Jorge Nocedal - 2000
One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Proofs and Refutations: The Logic of Mathematical Discovery
Imre Lakatos - 1976
Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.
Storytelling with Data: A Data Visualization Guide for Business Professionals
Cole Nussbaumer Knaflic - 2015
You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples--ready for immediate application to your next graph or presentation.Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to:Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data--Storytelling with Data will give you the skills and power to tell it!
Microsoft .NET - Architecting Applications for the Enterprise
Dino Esposito - 2014
But the principles and practices of software architecting–what the authors call the “science of hard decisions”–have been evolving for cloud, mobile, and other shifts. Now fully revised and updated, this book shares the knowledge and real-world perspectives that enable you to design for success–and deliver more successful solutions. In this fully updated Second Edition, you will: Learn how only a deep understanding of domain can lead to appropriate architecture Examine domain-driven design in both theory and implementation Shift your approach to code first, model later–including multilayer architecture Capture the benefits of prioritizing software maintainability See how readability, testability, and extensibility lead to code quality Take a user experience (UX) first approach, rather than designing for data Review patterns for organizing business logic Use event sourcing and CQRS together to model complex business domains more effectively Delve inside the persistence layer, including patterns and implementation.
Computer Science Distilled: Learn the Art of Solving Computational Problems
Wladston Ferreira Filho - 2017
Designed for readers who don't need the academic formality, it's a fast and easy computer science guide. It teaches essential concepts for people who want to program computers effectively. First, it introduces discrete mathematics, then it exposes the most common algorithms and data structures. It also shows the principles that make computers and programming languages work.
Neural Networks: A Comprehensive Foundation
Simon Haykin - 1994
Introducing students to the many facets of neural networks, this text provides many case studies to illustrate their real-life, practical applications.
Programming Entity Framework: DbContext
Julia Lerman - 2011
This concise book shows you how to use the API to perform set operations with the DbSet class, handle change tracking and resolve concurrency conflicts with the Change Tracker API, and validate changes to your data with the Validation API.With DbContext, you’ll be able to query and update data, whether you’re working with individual objects or graphs of objects and their related data. You’ll find numerous C# code samples to help you get started. All you need is experience with Visual Studio and database management basics.Use EF’s query capabilities to retrieve data, and use LINQ to sort and filter dataLearn how to add new data, and change and delete existing dataUse the Change Tracker API to access information EF keeps about the state of entity instancesControl change tracking information of entities in disconnected scenarios, including NTier applicationsValidate data changes before they’re sent to the database, and set up validation rulesBypass EF’s query pipeline and interact directly with the database
Foundations of Statistical Natural Language Processing
Christopher D. Manning - 1999
This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.
Feynman Lectures On Computation
Richard P. Feynman - 1996
Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.
Functional Programming in Scala
Rúnar Bjarnason - 2013
As a result, functional code is easier to test and reuse, simpler to parallelize, and less prone to bugs. Scala is an emerging JVM language that offers strong support for FP. Its familiar syntax and transparent interoperability with existing Java libraries make Scala a great place to start learning FP.Functional Programming in Scala is a serious tutorial for programmers looking to learn FP and apply it to the everyday business of coding. The book guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. In it, they'll find concrete examples and exercises that open up the world of functional programming.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Think Complexity: Complexity Science and Computational Modeling
Allen B. Downey - 2009
Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations.You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise.Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tablesStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet starter code and solutions to help you re-implement and extend original experiments in complexityExplore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topicsExamine case studies of complex systems submitted by students and readers
Make Your Own Neural Network: An In-depth Visual Introduction For Beginners
Michael Taylor - 2017
A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
Learning the UNIX Operating System
Jerry Peek - 1989
Why wade through a 600-page book when you can begin working productively in a matter of minutes? It's an ideal primer for Mac and PC users of the Internet who need to know a little bit about UNIX on the systems they visit.This book is the most effective introduction to UNIX in print. The fourth edition covers the highlights of the Linux operating system. It's a handy book for someone just starting with UNIX or Linux, as well as someone who encounters a UNIX system on the Internet. And it now includes a quick-reference card.Topics covered include: Linux operating system highlightsLogging in and logging outWindow systems (especially X/Motif)Managing UNIX files and directoriesSending and receiving mailRedirecting input/outputPipes and filtersBackground processingBasic network commandsv
