Book picks similar to
Schaum's Outline of Differential Geometry by Seymour Lipschutz
mathematics
math
non-fiction
cataloged
Origami Design Secrets: Mathematical Methods for an Ancient Art
Robert J. Lang - 2003
Lang, one of the worlds foremost origami artists and scientists, presents the never-before-described mathematical and geometric principles that allow anyone to design original origami, something once restricted to an elite few. From the theoretical underpinnings to detailed step-by-step folding sequences, this book takes a modern look at the centuries-old art of origami.
Tell Me The Odds: A 15 Page Introduction To Bayes Theorem
Scott Hartshorn - 2017
Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.
Indiscrete Thoughts
Gian-Carlo Rota - 1996
The era covered by this book, 1950 to 1990, was surely one of the golden ages of science as well as the American university.Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period Stanislav Ulam (who, together with Edward Teller, signed the patent application for the hydrogen bomb), Solomon Lefschetz (Chairman in the 50s of the Princeton mathematics department), William Feller (one of the founders of modern probability theory), Jack Schwartz (one of the founders of computer science), and many others.Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. After the publication of the essay "The Pernicious Influence of Mathematics upon Philosophy" (reprinted six times in five languages) the author was blacklisted in analytical philosophy circles. Indiscrete Thoughts should become an instant classic and the subject of debate for decades to come."Read Indiscrete Thoughts for its account of the way we were and what we have become; for its sensible advice and its exuberant rhetoric."--The Mathematical Intelligencer"Learned, thought-provoking, politically incorrect, delighting in paradox, and likely to offend but everywhere readable and entertaining."--The American Mathematical Monthly"It is about mathematicians, the way they think, and the world in which the live. It is 260 pages of Rota calling it like he sees it... Readers are bound to find his observations amusing if not insightful. Gian-Carlo Rota has written the sort of book that few mathematicians could write. What will appeal immediately to anyone with an interest in research mathematics are the stories he tells about the practice of modern mathematics."--MAA Reviews"
No bullshit guide to math and physics
Ivan Savov - 2010
It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.
Mathematical Methods in the Physical Sciences
Mary L. Boas - 1967
Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.
Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills
Paul J. Nahin - 2006
Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula--long regarded as the gold standard for mathematical beauty--and shows why it still lies at the heart of complex number theory. This book is the sequel to Paul Nahin's An Imaginary Tale: The Story of I [the square root of -1], which chronicled the events leading up to the discovery of one of mathematics' most elusive numbers, the square root of minus one. Unlike the earlier book, which devoted a significant amount of space to the historical development of complex numbers, Dr. Euler begins with discussions of many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. The topics covered span a huge range, from a never-before-told tale of an encounter between the famous mathematician G. H. Hardy and the physicist Arthur Schuster, to a discussion of the theoretical basis for single-sideband AM radio, to the design of chase-and-escape problems. The book is accessible to any reader with the equivalent of the first two years of college mathematics (calculus and differential equations), and it promises to inspire new applications for years to come. Or as Nahin writes in the book's preface: To mathematicians ten thousand years hence, Euler's formula will still be beautiful and stunning and untarnished by time.
Using Econometrics: A Practical Guide
A.H. Studenmund - 1987
"Using Econometrics: A Practical Guide "provides readers with a practical introduction that combines single-equation linear regression analysis with real-world examples and exercises. This text also avoids complex matrix algebra and calculus, making it an ideal text for beginners. New problem sets and added support make "Using Econometrics" modern and easier to use.
How to Prepare for Quantitative Aptitude for the CAT Common Admission Test
Arun Sharma - 2012
The book will also be extremely useful for those preparing for other MBA entrance examinations like XAT, SNAP, CMAT, NMAT, etc. Quantitative Aptitude is quite challenging component of the CAT question paper and the other mentioned MBA entrance examinations. In his inimitable style, Arun Sharma, an acknowledged authority on the topic, provides a comprehensive package of theory and practice problems to enable aspirants to attempt questions with extra speed and confidence.
CRC Handbook of Chemistry and Physics
David R. Lide - 1984
This edition contains NEW tables on Properties of Ionic Liquids, Solubilities of Hydrocarbons in Sea Water, Solubility of Organic Compounds in Superheated Water, and Nutritive Value of Foods. It also updates many tables including Critical Constants, Heats of Vaporization, Aqueous Solubility of Organic Compounds, Vapor Pressure of Mercury, Scientific Abbreviations and Symbols, and Bond Dissociation Energies. The 88th Edition also presents a new Foreword written by Dr. Harold Kroto, a 1996 Nobel Laureate in Chemistry.
Pure Mathematics: A First Course
J.K. Backhouse - 1974
This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.
How Many Socks Make a Pair?: Surprisingly Interesting Everyday Maths
Rob Eastaway - 2008
Using playing cards, a newspaper, the back of an envelope, a Sudoku, some pennies and of course a pair of socks, Rob Eastaway shows how maths can demonstrate its secret beauties in even the most mundane of everyday objects. Among the many fascinating curiosities in these pages, you will discover the strange link between limericks and rabbits, an apparently 'fair' coin game where the odds are massively in your favour, why tourist boards can't agree on where the centre of Britain is, and how simple paper folding can lead to a Jurassic Park monster. With plenty of ideas you'll want to test out for yourself, this engaging and refreshing look at mathematics is for everyone.
Coding the Matrix: Linear Algebra through Computer Science Applications
Philip N. Klein - 2013
Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program"
Vibrations and Waves
Anthony P. French - 1971
Generous support from a number of foundations provided the means for assembling and maintaining an experienced staff to co-operate with members of the Institute's Physics Department in the examination, improvement, and development of physics curriculum materials for students planning careers in the sciences. After careful analysis of objectives and the problems involved, preliminary versions of textbooks were prepared, tested through classroom use at M.I.T. and other institutions, re-evaluated, rewritten, and tried again. Only then were the final manuscripts undertaken.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan
Richard McElreath - 2015
Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
A Brief History of Mathematical Thought: Key concepts and where they come from
Luke Heaton - 2015
In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story.
The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations.
In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.