Information Visualization: Perception for Design


Colin Ware - 2000
    Ware's updated review of empirical research and interface design examples will do much to accelerate innovation and adoption of information visualization." —Ben Shneiderman, University of Maryland"Colin Ware is the perfect person to write this book, with a long history of prominent contributions to the visual interaction with machines and to information visualization directly. It goes a long way towards joining science to the practical design of information visualization systems." —from the foreword by Stuart Card, PARCMost designers know that yellow text presented against a blue background reads clearly and easily, but how many can explain why, and what really are the best ways to help others and ourselves clearly see key patterns in a bunch of data? When we use software, access a web site, or view graphics, our understanding is greatly enhanced or impeded by the way information is presented. By explaining in detail how we think visually, this book provides guidance on how to construct effective interactive information displays.This book combines a strictly scientific approach to human perception with a practical concern for the rules governing the effective visual presentation of information. Surveying the research of leading psychologists and neurophysiologists, author Colin Ware isolates key principles at work in vision and perception, and from them derives specific and effective visualization techniques suitable for a wide range of scenarios. Information Visualization offers practical guidelines that can be applied by anyone, and covers all facets of visual perception: color, organization, space perception, motion, and texture.* Major revision of this classic work, with a new chapter on visual thinking, new sections on face perception and flow visualization, an appendix on how to evaluate visualizations,and a greatly expanded chapter on color and color sequences. *New to this edition is the full-color treatment throughout, to better display over 400 illustrations.*From a leading researcher in the field of human perception who has brought together, in a single resource, all current scientific insight into the question of data visualization.

Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems


Peter Dayan - 2001
    This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Algorithms Illuminated (Part 1): The Basics


Tim Roughgarden - 2017
    Their applications range from network routing and computational genomics to public-key cryptography and database system implementation. Studying algorithms can make you a better programmer, a clearer thinker, and a master of technical interviews. Algorithms Illuminated is an accessible introduction to the subject---a transcript of what an expert algorithms tutor would say over a series of one-on-one lessons. The exposition is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. Part 1 of the book series covers asymptotic analysis and big-O notation, divide-and-conquer algorithms and the master method, randomized algorithms, and several famous algorithms for sorting and selection.

Principles of Instrumental Analysis


Douglas A. Skoog - 1971
    Emphasis is placed upon the theoretical basis of each type of instrument, its optimal area of application, its sensitivity, its precision, and its limitations. The text also introduces students to elementary integrated circuitry, microprocessors and computers, and treatment of analytical data.

Feature Engineering for Machine Learning


Alice Zheng - 2018
    With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.

Introduction to Operations Research [with Revised CD-ROM]


Frederick S. Hillier - 1967
    This edition also features the developments in Operations Research, such as metaheuristics, simulation, and spreadsheet modeling.

Hacker's Delight


Henry S. Warren Jr. - 2002
    Aiming to tell the dark secrets of computer arithmetic, this title is suitable for library developers, compiler writers, and lovers of elegant hacks.