Book picks similar to
Applied Computational Economics and Finance by Mario J. Miranda
economics
finance
economics-textbooks
economics_finance
Quantitative Trading: How to Build Your Own Algorithmic Trading Business
Ernest P. Chan - 2008
Ernest Chan, a respected independent trader and consultant, will show you how. Whether you're an independent retail trader looking to start your own quantitative trading business or an individual who aspires to work as a quantitative trader at a major financial institution, this practical guide contains the information you need to succeed.
Tell Me The Odds: A 15 Page Introduction To Bayes Theorem
Scott Hartshorn - 2017
Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.
Value At Risk: The New Benchmark for Managing Financial Risk
Philippe Jorion - 1996
Investments
Zvi Bodie - 1989
It blends practical and theoretical coverage, while maintaining an appropriate rigor and a clear writing style. Its unifying theme is that security markets are nearly efficient, meaning that most securities are priced appropriately given their risk and return attributes. The text places greater emphasis on asset allocation and offers a much broader and deeper treatment of futures, options, and other derivative security markets than most investment texts. It is also the only graduate Investments text to offer an online homework management system, McGraw-Hill's "Connect Finance."
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
Bayesian Data Analysis
Andrew Gelman - 1995
Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Microeconomic Theory
Andreu Mas-Colell - 1995
Masterfully combining the results of years of teaching microeconomics at Harvard University, Andreu Mas-Colell, Michael Whinston, and Jerry Green have filled that conspicuous vacancy with their groundbreaking text, Microeconomic Theory.The authors set out to create a solid organizational foundation upon which to build the effective teaching tool for microeconomic theory. The result presents unprecedented depth of coverage in all the essential topics, while allowing professors to tailor-make their course to suit personal priorities and style. Topics such as noncooperative game theory, information economics, mechanism design, and general equilibrium under uncertainty receive the attention that reflects their stature within the discipline. The authors devote an entire section to game theory alone, making it free-standing to allow instructors to return to it throughout the course when convenient. Discussion is clear, accessible, and engaging, enabling the student to gradually acquire confidence as well as proficiency. Extensive exercises within each chapter help students to hone their skills, while the text's appendix of terms, fully cross-referenced throughout the previous five sections, offers an accessible guide to the subject matter's terminology. Teachers of microeconomics need no longer rely upon scattered lecture notes to supplement their textbooks. Deftly written by three of the field's most influential scholars, Microeconomic Theory brings the readability, comprehensiveness, and versatility to the first-year graduate classroom that has long been missing.
The Fractal Geometry of Nature
BenoƮt B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences
Ernest F. Haeussler Jr. - 1987
Emphasis on developing algebraic skills is extended to the exercises--including both drill problems and applications. The authors work through examples and explanations with a blend of rigor and accessibility. In addition, they have refined the flow, transitions, organization, and portioning of the content over many editions to optimize learning for readers. The table of contents covers a wide range of topics efficiently, enabling readers to gain a diverse understanding.
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
John H. Miller - 2007
Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
Networks, Crowds, and Markets
David Easley - 2010
This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.
Mathematics for 3D Game Programming and Computer Graphics
Eric Lengyel - 2001
Unfortunately, most programmers frequently have a limited understanding of these essential mathematics and physics concepts. MATHEMATICS AND PHYSICS FOR PROGRAMMERS, THIRD EDITION provides a simple but thorough grounding in the mathematics and physics topics that programmers require to write algorithms and programs using a non-language-specific approach. Applications and examples from game programming are included throughout, and exercises follow each chapter for additional practice. The book's companion website provides sample code illustrating the mathematical and physics topics discussed in the book.
Statistics in a Nutshell: A Desktop Quick Reference
Sarah Boslaugh - 2008
This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrated by graphics, formulas, and plenty of solved examples. Before you know it, you'll learn to apply statistical reasoning and statistical techniques, from basic concepts of probability and hypothesis testing to multivariate analysis. Organized into four distinct sections, Statistics in a Nutshell offers you:Introductory material: Different ways to think about statistics Basic concepts of measurement and probability theoryData management for statistical analysis Research design and experimental design How to critique statistics presented by others Basic inferential statistics: Basic concepts of inferential statistics The concept of correlation, when it is and is not an appropriate measure of association Dichotomous and categorical data The distinction between parametric and nonparametric statistics Advanced inferential techniques: The General Linear Model Analysis of Variance (ANOVA) and MANOVA Multiple linear regression Specialized techniques: Business and quality improvement statistics Medical and public health statistics Educational and psychological statistics Unlike many introductory books on the subject, Statistics in a Nutshell doesn't omit important material in an effort to dumb it down. And this book is far more practical than most college texts, which tend to over-emphasize calculation without teaching you when and how to apply different statistical tests. With Statistics in a Nutshell, you learn how to perform most common statistical analyses, and understand statistical techniques presented in research articles. If you need to know how to use a wide range of statistical techniques without getting in over your head, this is the book you want.