Making Games with Python & Pygame


Al Sweigart - 2012
    Each chapter gives you the complete source code for a new game and teaches the programming concepts from these examples. The book is available under a Creative Commons license and can be downloaded in full for free from http: //inventwithpython.com/pygame This book was written to be understandable by kids as young as 10 to 12 years old, although it is great for anyone of any age who has some familiarity with Python.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

The Architecture of Open Source Applications


Amy Brown - 2011
    In contrast, most software developers only ever get to know a handful of large programs well—usually programs they wrote themselves—and never study the great programs of history. As a result, they repeat one another's mistakes rather than building on one another's successes.This book's goal is to change that. In it, the authors of twenty-five open source applications explain how their software is structured, and why. What are each program's major components? How do they interact? And what did their builders learn during their development? In answering these questions, the contributors to this book provide unique insights into how they think.If you are a junior developer, and want to learn how your more experienced colleagues think, this book is the place to start. If you are an intermediate or senior developer, and want to see how your peers have solved hard design problems, this book can help you too.

Systems Analysis and Design


Alan Dennis - 2002
    Building on their experience as professional systems analysts and award-winning teachers, authors Dennis, Wixom, and Roth capture the experience of developing and analyzing systems in a way that students can understand and apply.With Systems Analysis and Design, 4th edition , students will leave the course with experience that is a rich foundation for further work as a systems analyst.

Modern Operating Systems


Andrew S. Tanenbaum - 1992
    What makes an operating system modern? According to author Andrew Tanenbaum, it is the awareness of high-demand computer applications--primarily in the areas of multimedia, parallel and distributed computing, and security. The development of faster and more advanced hardware has driven progress in software, including enhancements to the operating system. It is one thing to run an old operating system on current hardware, and another to effectively leverage current hardware to best serve modern software applications. If you don't believe it, install Windows 3.0 on a modern PC and try surfing the Internet or burning a CD. Readers familiar with Tanenbaum's previous text, Operating Systems, know the author is a great proponent of simple design and hands-on experimentation. His earlier book came bundled with the source code for an operating system called Minux, a simple variant of Unix and the platform used by Linus Torvalds to develop Linux. Although this book does not come with any source code, he illustrates many of his points with code fragments (C, usually with Unix system calls). The first half of Modern Operating Systems focuses on traditional operating systems concepts: processes, deadlocks, memory management, I/O, and file systems. There is nothing groundbreaking in these early chapters, but all topics are well covered, each including sections on current research and a set of student problems. It is enlightening to read Tanenbaum's explanations of the design decisions made by past operating systems gurus, including his view that additional research on the problem of deadlocks is impractical except for "keeping otherwise unemployed graph theorists off the streets." It is the second half of the book that differentiates itself from older operating systems texts. Here, each chapter describes an element of what constitutes a modern operating system--awareness of multimedia applications, multiple processors, computer networks, and a high level of security. The chapter on multimedia functionality focuses on such features as handling massive files and providing video-on-demand. Included in the discussion on multiprocessor platforms are clustered computers and distributed computing. Finally, the importance of security is discussed--a lively enumeration of the scores of ways operating systems can be vulnerable to attack, from password security to computer viruses and Internet worms. Included at the end of the book are case studies of two popular operating systems: Unix/Linux and Windows 2000. There is a bias toward the Unix/Linux approach, not surprising given the author's experience and academic bent, but this bias does not detract from Tanenbaum's analysis. Both operating systems are dissected, describing how each implements processes, file systems, memory management, and other operating system fundamentals. Tanenbaum's mantra is simple, accessible operating system design. Given that modern operating systems have extensive features, he is forced to reconcile physical size with simplicity. Toward this end, he makes frequent references to the Frederick Brooks classic The Mythical Man-Month for wisdom on managing large, complex software development projects. He finds both Windows 2000 and Unix/Linux guilty of being too complicated--with a particular skewering of Windows 2000 and its "mammoth Win32 API." A primary culprit is the attempt to make operating systems more "user-friendly," which Tanenbaum views as an excuse for bloated code. The solution is to have smart people, the smallest possible team, and well-defined interactions between various operating systems components. Future operating system design will benefit if the advice in this book is taken to heart. --Pete Ostenson

Computers & Typesetting, Volume A: The TeXBook


Donald Ervin Knuth - 1984
    It is particularly valuable where the document, article, or book to be produced contains a lot of mathematics, and where the user is concerned about typographic quality. TeX software offers both writers and publishers the opportunity to produce technical text of all kinds, in an attractive form, with the speed and efficiency of a computer system.Novice and expert users alike will gain from The TeXbook the level of information they seek. Knuth warns newcomers away from the more difficult areas, while he entices experienced users with new challenges. The novice need not learn much about TeX to prepare a simple manuscript with it. But for the preparation of more complex documents, The TeXbook contains all the detail required.Knuth’s familiar wit, and illustrations specially drawn by Duane Bibby, add a light touch to an unusually readable software manual.The TeXbook is the first in a five-volume series on Computers and Typesetting, all authored by Knuth.

The REST API Design Handbook


George Reese - 2012
    The RESTful approach to web services design is rapidly become the approach of choice. Unfortunately, too few people have truly solid REST API design skills, and discussions of REST can become bogged down in dry theory.The REST API Design Handbook is a simple, practical guide to aid software engineers and software architects create lasting, scalable APIs based on REST architectural principles. The book provides a sound foundation in discussing the constraints that define a REST API. It quickly goes beyond that into the practical aspects of implementing such an API in the real world.Written by cloud computing expert George Reese, The REST API Design Handbook reflects hands on work in consuming many different third party APIs as well the development of REST-based web services APIs. It addresses all of the debates the commonly arise while creating these APIs. Subjects covered include:* REST architectural constraints* Using HTTP methods and response codes in an API* Authenticating RESTful API calls* Versioning* Asynchronous Operations* Pagination and Streaming* Polling and Push Notifications* Rate Limiting

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

Haskell: The Craft of Functional Programming


Simon Thompson - 1996
    Running examples and case studies highlight new concepts and alternative approaches to program design.

Java SE 6: The Complete Reference


Herbert Schildt - 2006
    He includes information on Java Platform Standard Edition 6 (Java SE 6) and offers complete coverage of the Java language, its syntax, keywords, and fundamental programming principles.

Masterminds of Programming: Conversations with the Creators of Major Programming Languages


Federico BiancuzziJohn Hughes - 2009
    In this unique collection, you'll learn about the processes that led to specific design decisions, including the goals they had in mind, the trade-offs they had to make, and how their experiences have left an impact on programming today. Masterminds of Programming includes individual interviews with:Adin D. Falkoff: APL Thomas E. Kurtz: BASIC Charles H. Moore: FORTH Robin Milner: ML Donald D. Chamberlin: SQL Alfred Aho, Peter Weinberger, and Brian Kernighan: AWK Charles Geschke and John Warnock: PostScript Bjarne Stroustrup: C++ Bertrand Meyer: Eiffel Brad Cox and Tom Love: Objective-C Larry Wall: Perl Simon Peyton Jones, Paul Hudak, Philip Wadler, and John Hughes: Haskell Guido van Rossum: Python Luiz Henrique de Figueiredo and Roberto Ierusalimschy: Lua James Gosling: Java Grady Booch, Ivar Jacobson, and James Rumbaugh: UML Anders Hejlsberg: Delphi inventor and lead developer of C# If you're interested in the people whose vision and hard work helped shape the computer industry, you'll find Masterminds of Programming fascinating.

Python for Data Analysis


Wes McKinney - 2011
    It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples

Game Project Completed: How Successful Indie Game Developers Finish Their Projects


Thomas Schwarzl - 2014
    They teach you how to make games. This book does not show you how to make games. It shows you how to take your game project to the finish line. Many game projects never make it beyond the alpha state.Game Development Success Is All About The Inner Game.Being a successful game developer does not (just) mean being a great programmer, a smart game designer or a gifted artist. It means dominating the inner game of game making. This separates the pros from the wannabes. It's the knowledge of how to stay focused, motivated and efficient during your game projects. It's the skillset of keeping things simple and avoiding misleading dreams of the next overnight success. Finally it's about thinking as a salesperson, not just as a designer, programmer or artist.

LATEX: A Document Preparation System: User's Guide and Reference Manual


Leslie Lamport - 1985
    The new edition features additional styles and functions, improved font handling, and enhanced graphics capabilities. Other parts of the book have been revised to reflect user comments and suggestions. Selected sections have been rewritten to explain challenging concepts or functions, and the descriptions of both MakeIndex and BibTEX have been updated. New LATEX users will want to start with this book, and current users, particularly as they upgrade to the LATEX2e software, will be eager to obtain the most up-to-date version of its associated manual. Features Revised version of the authoritative user's guide and reference manual for the LATEX computer typesetting system. Features the new standard software release - LATEX2e. Sections rewritten to explain difficult concepts or functions.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.